Shiriaeva A, Kuznedelov K, Fedorov I, Musharova O, Khvostikov T, Tsoy Y
Sci Adv. 2022; 8(47):eabn8650.
PMID: 36427302
PMC: 9699676.
DOI: 10.1126/sciadv.abn8650.
Mei Q, Fitzgerald D, Liu J, Xia J, Pribis J, Zhai Y
Sci Adv. 2021; 7(25).
PMID: 34144978
PMC: 8213236.
DOI: 10.1126/sciadv.abe2846.
Crozat E, Tardin C, Salhi M, Rousseau P, Lablaine A, Bertoni T
Nat Commun. 2020; 11(1):3796.
PMID: 32732900
PMC: 7394560.
DOI: 10.1038/s41467-020-17606-6.
Farrokhi A, Liu H, Szatmari G
J Bacteriol. 2019; 201(24).
PMID: 31548274
PMC: 6872196.
DOI: 10.1128/JB.00391-19.
Galli E, Midonet C, Paly E, Barre F
PLoS Genet. 2017; 13(3):e1006702.
PMID: 28358835
PMC: 5391129.
DOI: 10.1371/journal.pgen.1006702.
How Xer-exploiting mobile elements overcome cellular control.
Midonet C, Barre F
Proc Natl Acad Sci U S A. 2016; 113(30):8343-5.
PMID: 27422553
PMC: 4968745.
DOI: 10.1073/pnas.1608539113.
Homologous Recombination-Experimental Systems, Analysis, and Significance.
Kuzminov A
EcoSal Plus. 2015; 4(2).
PMID: 26442506
PMC: 4190071.
DOI: 10.1128/ecosalplus.7.2.6.
The N-terminal membrane-spanning domain of the Escherichia coli DNA translocase FtsK hexamerizes at midcell.
Bisicchia P, Steel B, Mariam Debela M, Lowe J, Sherratt D
mBio. 2013; 4(6):e00800-13.
PMID: 24302254
PMC: 3870252.
DOI: 10.1128/mBio.00800-13.
FtsK actively segregates sister chromosomes in Escherichia coli.
Stouf M, Meile J, Cornet F
Proc Natl Acad Sci U S A. 2013; 110(27):11157-62.
PMID: 23781109
PMC: 3704039.
DOI: 10.1073/pnas.1304080110.
A defined terminal region of the E. coli chromosome shows late segregation and high FtsK activity.
Deghorain M, Pages C, Meile J, Stouf M, Capiaux H, Mercier R
PLoS One. 2011; 6(7):e22164.
PMID: 21799784
PMC: 3140498.
DOI: 10.1371/journal.pone.0022164.
Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis.
Kaimer C, Schenk K, Graumann P
J Bacteriol. 2011; 193(6):1334-40.
PMID: 21239579
PMC: 3067622.
DOI: 10.1128/JB.00918-10.
DNA motifs that sculpt the bacterial chromosome.
Touzain F, Petit M, Schbath S, El Karoui M
Nat Rev Microbiol. 2010; 9(1):15-26.
PMID: 21164534
DOI: 10.1038/nrmicro2477.
Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase.
Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F
Nucleic Acids Res. 2010; 38(19):6477-89.
PMID: 20542912
PMC: 2965235.
DOI: 10.1093/nar/gkq507.
Unlinking chromosome catenanes in vivo by site-specific recombination.
Grainge I, Bregu M, Vazquez M, Sivanathan V, Ip S, Sherratt D
EMBO J. 2007; 26(19):4228-38.
PMID: 17805344
PMC: 2230843.
DOI: 10.1038/sj.emboj.7601849.
The unconventional Xer recombination machinery of Streptococci/Lactococci.
Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot M, Labonte J, Lanfranchi D
PLoS Genet. 2007; 3(7):e117.
PMID: 17630835
PMC: 1914069.
DOI: 10.1371/journal.pgen.0030117.
Separation of chromosome termini during sporulation of Bacillus subtilis depends on SpoIIIE.
Bogush M, Xenopoulos P, Piggot P
J Bacteriol. 2007; 189(9):3564-72.
PMID: 17322320
PMC: 1855901.
DOI: 10.1128/JB.01949-06.
Asymmetric activation of Xer site-specific recombination by FtsK.
Massey T, Aussel L, Barre F, Sherratt D
EMBO Rep. 2004; 5(4):399-404.
PMID: 15031713
PMC: 1299027.
DOI: 10.1038/sj.embor.7400116.
Comparative genomics of Rickettsia prowazekii Madrid E and Breinl strains.
Ge H, Chuang Y, Zhao S, Tong M, Tsai M, Temenak J
J Bacteriol. 2004; 186(2):556-65.
PMID: 14702324
PMC: 305770.
DOI: 10.1128/JB.186.2.556-565.2004.
Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination.
Ip S, Bregu M, Barre F, Sherratt D
EMBO J. 2003; 22(23):6399-407.
PMID: 14633998
PMC: 291834.
DOI: 10.1093/emboj/cdg589.
Filamentous bacteriophages of vibrios are integrated into the dif-like site of the host chromosome.
Iida T, Makino K, Nasu H, Yokoyama K, Tagomori K, Hattori A
J Bacteriol. 2002; 184(17):4933-5.
PMID: 12169621
PMC: 135294.
DOI: 10.1128/JB.184.17.4933-4935.2002.