» Articles » PMID: 9469844

Triplex Targeting of a Native Gene in Permeabilized Intact Cells: Covalent Modification of the Gene for the Chemokine Receptor CCR5

Overview
Specialty Biochemistry
Date 1998 Apr 4
PMID 9469844
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

A 12 nucleotide oligodeoxyribopurine tract in the gene for the chemokine receptor CCR5 has been targeted and covalently modified in intact cells by a 12mer triplex forming oligonucleotide (TFO) bearing a reactive group. A nitrogen mustard placed on the 5'-end of the purine motif TFO modified a guanine on the DNA target with high efficiency and selectivity. A new use of a guanine analog in these TFOs significantly enhanced triplex formation and efficiency of modification, as did the use of the triplex-stabilizing intercalator coralyne. This site-directed modification of a native chromosomal gene in intact human cells under conditions where many limitations of triplex formation have been partially addressed underscores the potential of this approach for gene control via site-directed mutagenesis.

Citing Articles

G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.

Gaynutdinov T, Englund E, Appella D, Onyshchenko M, Neumann R, Panyutin I Nucleic Acid Ther. 2015; 25(2):78-84.

PMID: 25650982 PMC: 4376483. DOI: 10.1089/nat.2014.0517.


Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.

Rogers F, Lloyd J, Kaushik Tiwari M Artif DNA PNA XNA. 2014; 5(1):e27792.

PMID: 25483840 PMC: 4014521. DOI: 10.4161/adna.27792.


Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids.

Schleifman E, Bindra R, Leif J, del Campo J, Rogers F, Uchil P Chem Biol. 2011; 18(9):1189-98.

PMID: 21944757 PMC: 3183429. DOI: 10.1016/j.chembiol.2011.07.010.


Oligo/polynucleotide-based gene modification: strategies and therapeutic potential.

Sargent R, Kim S, Gruenert D Oligonucleotides. 2011; 21(2):55-75.

PMID: 21417933 PMC: 3078494. DOI: 10.1089/oli.2010.0273.


Bioconjugation of oligonucleotides for treating liver fibrosis.

Ye Z, Houssein H, Mahato R Oligonucleotides. 2007; 17(4):349-404.

PMID: 18154454 PMC: 2777659. DOI: 10.1089/oli.2007.0097.


References
1.
Takasugi M, Guendouz A, Chassignol M, Decout J, Lhomme J, Thuong N . Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A. 1991; 88(13):5602-6. PMC: 51925. DOI: 10.1073/pnas.88.13.5602. View

2.
Pilch D, Levenson C, Shafer R . Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry. 1991; 30(25):6081-8. DOI: 10.1021/bi00239a001. View

3.
Helene C . The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des. 1991; 6(6):569-84. View

4.
Gamper H, Reed M, Cox T, Virosco J, Adams A, Gall A . Facile preparation of nuclease resistant 3' modified oligodeoxynucleotides. Nucleic Acids Res. 1993; 21(1):145-50. PMC: 309076. DOI: 10.1093/nar/21.1.145. View

5.
Milligan J, Krawczyk S, Wadwani S, Matteucci M . An anti-parallel triple helix motif with oligodeoxynucleotides containing 2'-deoxyguanosine and 7-deaza-2'-deoxyxanthosine. Nucleic Acids Res. 1993; 21(2):327-33. PMC: 309110. DOI: 10.1093/nar/21.2.327. View