Atasoy M, Bartkova S, Cetecioglu-Gurol Z, Mira N, OByrne C, Perez-Rodriguez F
FEMS Microbiol Rev. 2024; 48(5).
PMID: 38760882
PMC: 11418653.
DOI: 10.1093/femsre/fuae015.
Mota M, Matos M, Bahri N, Sa-Correia I
Microb Cell Fact. 2024; 23(1):71.
PMID: 38419072
PMC: 10903034.
DOI: 10.1186/s12934-024-02309-0.
Antunes M, Kale D, Sychrova H, Sa-Correia I
Microb Cell. 2023; 10(12):261-276.
PMID: 38053573
PMC: 10695635.
DOI: 10.15698/mic2023.12.809.
Peetermans A, Foulquie-Moreno M, Thevelein J
Microb Cell. 2021; 8(6):111-130.
PMID: 34055965
PMC: 8144909.
DOI: 10.15698/mic2021.06.751.
Licek J, Baron M, Sochor J
Molecules. 2020; 25(23).
PMID: 33291809
PMC: 7729861.
DOI: 10.3390/molecules25235737.
Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid.
Balderas-Hernandez V, Correia K, Mahadevan R
J Ind Microbiol Biotechnol. 2018; 45(8):735-751.
PMID: 29876685
DOI: 10.1007/s10295-018-2053-1.
A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.
Gonzalez-Ramos D, Gorter de Vries A, Grijseels S, van Berkum M, Swinnen S, van den Broek M
Biotechnol Biofuels. 2016; 9:173.
PMID: 27525042
PMC: 4983051.
DOI: 10.1186/s13068-016-0583-1.
RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH.
Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J
Microb Cell Fact. 2015; 14:143.
PMID: 26376644
PMC: 4574170.
DOI: 10.1186/s12934-015-0331-4.
The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.
Fernandez-Nino M, Marquina M, Swinnen S, Rodriguez-Porrata B, Nevoigt E, Arino J
Appl Environ Microbiol. 2015; 81(22):7813-21.
PMID: 26341199
PMC: 4616936.
DOI: 10.1128/AEM.02313-15.
Understanding biocatalyst inhibition by carboxylic acids.
Jarboe L, Royce L, Liu P
Front Microbiol. 2013; 4:272.
PMID: 24027566
PMC: 3760142.
DOI: 10.3389/fmicb.2013.00272.
Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus.
Liao G, Liu Q, Xie J
Microb Cell Fact. 2013; 12:19.
PMID: 23432849
PMC: 3724488.
DOI: 10.1186/1475-2859-12-19.
Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae.
Ullah A, Orij R, Brul S, Smits G
Appl Environ Microbiol. 2012; 78(23):8377-87.
PMID: 23001666
PMC: 3497387.
DOI: 10.1128/AEM.02126-12.
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
Mira N, Palma M, Guerreiro J, Sa-Correia I
Microb Cell Fact. 2010; 9:79.
PMID: 20973990
PMC: 2972246.
DOI: 10.1186/1475-2859-9-79.
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid.
Mira N, Becker J, Sa-Correia I
OMICS. 2010; 14(5):587-601.
PMID: 20955010
PMC: 3125556.
DOI: 10.1089/omi.2010.0048.
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view.
Mira N, Teixeira M, Sa-Correia I
OMICS. 2010; 14(5):525-40.
PMID: 20955006
PMC: 3129613.
DOI: 10.1089/omi.2010.0072.
Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.
Zheng D, Wu X, Wang P, Chi X, Tao X, Li P
J Ind Microbiol Biotechnol. 2010; 38(3):415-22.
PMID: 20652356
DOI: 10.1007/s10295-010-0784-8.
Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.
Teixeira M, Raposo L, Mira N, Lourenco A, Sa-Correia I
Appl Environ Microbiol. 2009; 75(18):5761-72.
PMID: 19633105
PMC: 2747848.
DOI: 10.1128/AEM.00845-09.
The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives.
Simoes T, Mira N, Fernandes A, Sa-Correia I
Appl Environ Microbiol. 2006; 72(11):7168-75.
PMID: 16980434
PMC: 1636168.
DOI: 10.1128/AEM.01476-06.
Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH.
Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D
Appl Environ Microbiol. 2006; 72(8):5492-9.
PMID: 16885303
PMC: 1538745.
DOI: 10.1128/AEM.00683-06.
Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1.
Simoes T, Teixeira M, Fernandes A, Sa-Correia I
Appl Environ Microbiol. 2003; 69(7):4019-28.
PMID: 12839777
PMC: 165130.
DOI: 10.1128/AEM.69.7.4019-4028.2003.