» Articles » PMID: 9436952

Estimation of the Noise in Magnitude MR Images

Overview
Publisher Elsevier
Specialty Radiology
Date 1998 Jan 22
PMID 9436952
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Magnitude magnetic resonance data are Rician distributed. In this note a new method is proposed to estimate the image noise variance for this type of data distribution. The method is based on a double image acquisition, thereby exploiting the knowledge of the Rice distribution moments.

Citing Articles

Deep learning-based Lorentzian fitting of water saturation shift referencing spectra in MRI.

Mohammed Ali S, Yadav N, Wirestam R, Singh M, Heo H, van Zijl P Magn Reson Med. 2023; 90(4):1610-1624.

PMID: 37279008 PMC: 10524193. DOI: 10.1002/mrm.29718.


Personalized synthetic MR imaging with deep learning enhancements.

Pal S, Dutta S, Maitra R Magn Reson Med. 2022; 89(4):1634-1643.

PMID: 36420834 PMC: 10100029. DOI: 10.1002/mrm.29527.


Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography.

Yan M, Yu W, Lv Q, Lv Q, Bo T, Chen X Elife. 2022; 11.

PMID: 35593765 PMC: 9122499. DOI: 10.7554/eLife.72534.


Recommendations of Choice of Head Coil and Prescan Normalize Filter Depend on Region of Interest and Task.

Schmitt T, Rieger J Front Neurosci. 2021; 15:735290.

PMID: 34776844 PMC: 8585748. DOI: 10.3389/fnins.2021.735290.


Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images.

Osadebey M, Pedersen M, Arnold D, Wendel-Mitoraj K J Imaging. 2021; 5(1).

PMID: 34465703 PMC: 8320873. DOI: 10.3390/jimaging5010020.