Determination of Cerebral Glucose Transport and Metabolic Kinetics by Dynamic MR Spectroscopy
Overview
Affiliations
A new in vivo nuclear magnetic resonance (NMR) spectroscopy method is introduced that dynamically measures cerebral utilization of magnetically labeled [1-13C]glucose from the change in total brain glucose signals on infusion. Kinetic equations are derived using a four-compartment model incorporating glucose transport and phosphorylation. Brain extract data show that the glucose 6-phosphate concentration is negligible relative to glucose, simplifying the kinetics to three compartments and allowing direct determination of the glucose-utilization half-life time [t1/2 = ln2/(k2 + k3)] from the time dependence of the NMR signal. Results on isofluorane (n = 5)- and halothane (n = 7)-anesthetized cats give a hyperglycemic t1/2 = 5.10 +/- 0.11 min-1 (SE). Using Michaelis-Menten kinetics and an assumed half-saturation constant Kt = 5 +/- 1 mM, we determined a maximal transport rate Tmax = 0.83 +/- 0.19 mumol.g-1.min-1, a cerebral metabolic rate of glucose CMRGlc = 0.22 +/- 0.03 mumol.g-1.min-1, and a normoglycemic cerebral influx rate CIRGlc = 0.37 +/- 0.05 mumol.g-1.min-1. Possible extension of this approach to positron emission tomography and proton NMR is discussed.
Lehmann P, Seidemo A, Andersen M, Xu X, Li X, Yadav N Magn Reson Med. 2022; 89(5):1871-1887.
PMID: 36579955 PMC: 9992166. DOI: 10.1002/mrm.29563.
Dickie B, Jin T, Wang P, Hinz R, Harris W, Boutin H J Cereb Blood Flow Metab. 2022; 42(11):2066-2079.
PMID: 35748031 PMC: 9580170. DOI: 10.1177/0271678X221108841.
Eleftheriadou D, Berg M, Phillips J, Shipley R Biotechnol Bioeng. 2022; 119(7):1980-1996.
PMID: 35445744 PMC: 9323509. DOI: 10.1002/bit.28105.
Chen L, Wei Z, Chan K, Li Y, Suchal K, Bi S J Cereb Blood Flow Metab. 2020; 41(5):1013-1025.
PMID: 32669023 PMC: 8054725. DOI: 10.1177/0271678X20941264.
Huang J, van Zijl P, Han X, Dong C, Cheng G, Tse K Sci Adv. 2020; 6(20):eaba3884.
PMID: 32426510 PMC: 7220384. DOI: 10.1126/sciadv.aba3884.