» Articles » PMID: 9431329

Predicting In-hospital Deaths from Coronary Artery Bypass Graft Surgery. Do Different Severity Measures Give Different Predictions?

Overview
Journal Med Care
Specialty Health Services
Date 1998 Feb 7
PMID 9431329
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Severity-adjusted death rates for coronary artery bypass graft (CABG) surgery by provider are published throughout the country. Whether five severity measures rated severity differently for identical patients was examined in this study.

Methods: Two severity measures rate patients using clinical data taken from the first two hospital days (MedisGroups, physiology scores); three use diagnoses and other information coded on standard, computerized hospital discharge abstracts (Disease Staging, Patient Management Categories, all patient refined diagnosis related groups). The database contained 7,764 coronary artery bypass graft patients from 38 hospitals with 3.2% in-hospital deaths. Logistic regression was performed to predict deaths from age, age squared, sex, and severity scores, and c statistics from these regressions were used to indicate model discrimination. Odds ratios of death predicted by different severity measures were compared.

Results: Code-based measures had better c statistics than clinical measures: all patient refined diagnosis related groups, c = 0.83 (95% C.I. 0.81, 0.86) versus MedisGroups, c = 0.73 (95% C.I. 0.70, 0.76). Code-based measures predicted very different odds of dying than clinical measures for more than 30% of patients. Diagnosis codes indicting postoperative, life-threatening conditions may contribute to the superior predictive power of code-based measures.

Conclusions: Clinical and code-based severity measures predicted different odds of dying for many coronary artery bypass graft patients. Although code-based measures had better statistical performance, this may reflect their reliance on diagnosis codes for life-threatening conditions occurring late in the hospitalization, possibly as complications of care. This compromises their utility for drawing inferences about quality of care based on severity-adjusted coronary artery bypass graft death rates.

Citing Articles

Risk assessment methods for cardiac surgery and intervention.

Thalji N, Suri R, Greason K, Schaff H Nat Rev Cardiol. 2014; 11(12):704-14.

PMID: 25245832 DOI: 10.1038/nrcardio.2014.136.


Does access modality matter? Evaluation of validity in reusing clinical care data.

Danford C, Horvath M, Hammond W, Ferranti J AMIA Annu Symp Proc. 2014; 2013:278-83.

PMID: 24551337 PMC: 3900178.


What are the rates and causes of hospital readmission after total knee arthroplasty?.

Schairer W, Vail T, Bozic K Clin Orthop Relat Res. 2013; 472(1):181-7.

PMID: 23645339 PMC: 3889434. DOI: 10.1007/s11999-013-3030-7.


Comparing hospital mortality--how to count does matter for patients hospitalized for acute myocardial infarction (AMI), stroke and hip fracture.

Kristoffersen D, Helgeland J, Clench-Aas J, Laake P, Veierod M BMC Health Serv Res. 2012; 12:364.

PMID: 23088745 PMC: 3526398. DOI: 10.1186/1472-6963-12-364.


Effect of risk adjustment method on comparisons of health care utilization between complementary and alternative medicine users and nonusers.

Lind B, Gerkovich M, Cherkin D, Deyo R, Sherman K, Lafferty W J Altern Complement Med. 2012; 19(3):250-6.

PMID: 23036140 PMC: 3609614. DOI: 10.1089/acm.2011.0707.