Grodecki K, Olasinska-Wisniewska A, Cyran A, Urbanowicz T, Kwiecinski J, Geers J
Radiology. 2024; 312(2):e240229.
PMID: 39136569
PMC: 11366676.
DOI: 10.1148/radiol.240229.
Witz A, Effertz D, Goebel N, Schwab M, Franke U, Torzewski M
Biomolecules. 2023; 13(7).
PMID: 37509127
PMC: 10377083.
DOI: 10.3390/biom13071091.
Tao T, Zheng J, Han Y, Yang Q, Ni Y, Ma L
Int J Gen Med. 2022; 15:4665-4673.
PMID: 35548590
PMC: 9081007.
DOI: 10.2147/IJGM.S363989.
Bouchareb R, Guauque-Olarte S, Snider J, Zaminski D, Anyanwu A, Stelzer P
JACC Basic Transl Sci. 2021; 6(1):25-39.
PMID: 33532664
PMC: 7838057.
DOI: 10.1016/j.jacbts.2020.11.008.
Cartlidge T, Bing R, Kwiecinski J, Guzzetti E, Pawade T, Doris M
Heart. 2021; 107(23):1905-1911.
PMID: 33514522
PMC: 8600609.
DOI: 10.1136/heartjnl-2020-318556.
Prognostic significance of aortic valve calcium in relation to coronary artery calcification for long-term, cause-specific mortality: results from the CAC Consortium.
Han D, Cordoso R, Whelton S, Rozanski A, Budoff M, Miedema M
Eur Heart J Cardiovasc Imaging. 2020; 22(11):1257-1263.
PMID: 33331631
PMC: 8527330.
DOI: 10.1093/ehjci/jeaa336.
The Role of Wnt/β-Catenin Pathway Mediators in Aortic Valve Stenosis.
Khan K, Yu B, Kiwan C, Shalal Y, Filimon S, Cipro M
Front Cell Dev Biol. 2020; 8:862.
PMID: 33015048
PMC: 7513845.
DOI: 10.3389/fcell.2020.00862.
Histological assessment of the human heart valves and its relationship with age.
Gumpangseth T, Lekawanvijit S, Mahakkanukrauh P
Anat Cell Biol. 2020; 53(3):261-271.
PMID: 32727956
PMC: 7527117.
DOI: 10.5115/acb.20.093.
Clinical impact of pathology-proven etiology of severely stenotic aortic valves on mid-term outcomes in patients undergoing surgical aortic valve replacement.
Miura S, Inoue K, Kumamaru H, Yamashita T, Hanyu M, Shirai S
PLoS One. 2020; 15(3):e0229721.
PMID: 32155164
PMC: 7064191.
DOI: 10.1371/journal.pone.0229721.
Correlation of Micro-Computed Tomography Assessment of Valvular Mineralisation with Histopathological and Immunohistochemical Features of Calcific Aortic Valve Disease.
Solache-Berrocal G, Barral-Varela A, Areces-Rodriguez S, Junco-Vicente A, Vallina-Alvarez A, Corte-Torres M
J Clin Med. 2019; 9(1).
PMID: 31877754
PMC: 7019701.
DOI: 10.3390/jcm9010029.
Comparing the Role of Mechanical Forces in Vascular and Valvular Calcification Progression.
Gomel M, Lee R, Grande-Allen K
Front Cardiovasc Med. 2019; 5:197.
PMID: 30687719
PMC: 6335252.
DOI: 10.3389/fcvm.2018.00197.
Prevalence and prognosis of ischaemic and non-ischaemic myocardial fibrosis in older adults.
Shanbhag S, Greve A, Aspelund T, Schelbert E, Cao J, Danielsen R
Eur Heart J. 2018; 40(6):529-538.
PMID: 30445559
PMC: 6657269.
DOI: 10.1093/eurheartj/ehy713.
Human Genetic Susceptibility to Native Valve Endocarditis in Patients With Bacteremia: Genome-Wide Association Study.
Moreau K, Clemenceau A, Moing V, Messika-Zeitoun D, Andersen P, Bruun N
Front Microbiol. 2018; 9:640.
PMID: 29670602
PMC: 5893849.
DOI: 10.3389/fmicb.2018.00640.
A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis.
Theriault S, Gaudreault N, Lamontagne M, Rosa M, Boulanger M, Messika-Zeitoun D
Nat Commun. 2018; 9(1):988.
PMID: 29511167
PMC: 5840407.
DOI: 10.1038/s41467-018-03260-6.
Lipoprotein(a) Associated Molecules are Prominent Components in Plasma and Valve Leaflets in Calcific Aortic Valve Stenosis.
Torzewski M, Ravandi A, Yeang C, Edel A, Bhindi R, Kath S
JACC Basic Transl Sci. 2017; 2(3):229-240.
PMID: 29147686
PMC: 5685511.
DOI: 10.1016/j.jacbts.2017.02.004.
A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis.
Martin-Rojas T, Mourino-Alvarez L, Gil-Dones F, de la Cuesta F, Rosello-Lleti E, Laborde C
Clin Proteomics. 2017; 14:12.
PMID: 28439213
PMC: 5399387.
DOI: 10.1186/s12014-017-9147-z.
RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.
Guauque-Olarte S, Droit A, Tremblay-Marchand J, Gaudreault N, Kalavrouziotis D, Dagenais F
Physiol Genomics. 2016; 48(10):749-761.
PMID: 27495158
PMC: 6195654.
DOI: 10.1152/physiolgenomics.00041.2016.
Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation.
Hamatani Y, Ishibashi-Ueda H, Nagai T, Sugano Y, Kanzaki H, Yasuda S
PLoS One. 2016; 11(8):e0160208.
PMID: 27479126
PMC: 4968844.
DOI: 10.1371/journal.pone.0160208.
Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease.
Guauque-Olarte S, Messika-Zeitoun D, Droit A, Lamontagne M, Tremblay-Marchand J, Lavoie-Charland E
Circ Cardiovasc Genet. 2015; 8(6):812-22.
PMID: 26553695
PMC: 4934886.
DOI: 10.1161/CIRCGENETICS.115.001145.
Enzymatically Modified Low-Density Lipoprotein Is Present in All Stages of Aortic Valve Sclerosis: Implications for Pathogenesis of the Disease.
Twardowski L, Cheng F, Michaelsen J, Winter S, Hofmann U, Schaeffeler E
J Am Heart Assoc. 2015; 4(10):e002156.
PMID: 26475297
PMC: 4845139.
DOI: 10.1161/JAHA.115.002156.