» Articles » PMID: 9421831

Cognitive Planning in Humans: Neuropsychological, Neuroanatomical and Neuropharmacological Perspectives

Overview
Journal Prog Neurobiol
Specialty Neurology
Date 1998 Jan 9
PMID 9421831
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, considerable progress has been made in understanding the cognitive and neuroanatomical basis of high-level planning behaviour through a combination of neuropsychological, neuropharmacological and functional neuroimaging approaches. In this article, early evidence suggesting a relationship between planning impairments and damage to the frontal lobe is reviewed and several contemporary studies of planning behaviour in patients with circumscribed frontal lobe excisions are described in detail. These neuropsychological investigations, together with recent functional neuroimaging studies of normal control subjects, have identified a specific area within the mid-dorsolateral frontal cortex of humans which appears to be critically involved in the cognitive processes that mediate efficient planning. The functions of this region, both in cognitive planning and in related functions such as working memory, are then discussed in the context of a general theoretical framework for understanding the functional organization of "executive" processes within the human lateral frontal cortex. In the final sections, the relationship between the planning deficits observed after intrinsic frontal lobe damage and those exhibited by patients with neuropathology of primarily sub-cortical origin, such as Parkinson's disease, is discussed. A central model for much of this work has been the concept of cortico-striatal circuitry which emphasizes the relationship between the neocortex and the striatum. The combined evidence from comparative studies in patients and from functional neuroimaging studies on Parkinson's disease suggests that altered cortico-striatal interactions may disrupt normal planning function at a number of levels, possibly consequent upon intrinsic striatal pathology on the one hand and the partial loss of (frontal) cortical input to the basal ganglia on the other.

Citing Articles

Phytochemical screening and neuro-pharmacological activity of flowers: Integrating , and approaches.

Alam F, Alam R, Yusuf A, Ripa J, Nithin R, Barua S Heliyon. 2025; 11(3):e42017.

PMID: 39975813 PMC: 11835627. DOI: 10.1016/j.heliyon.2025.e42017.


Computerised Attention Functions Training Versus Computerised Executive Functions Training for Children with Attention Deficit/Hyperactivity Disorder: A Randomised Controlled Trial.

Trinczer I, Shalev L J Clin Med. 2024; 13(23).

PMID: 39685698 PMC: 11642256. DOI: 10.3390/jcm13237239.


Brain-consistent architecture for imagination.

Yamakawa H, Fukawa A, Yairi I, Matsuo Y Front Syst Neurosci. 2024; 18:1302429.

PMID: 39229305 PMC: 11368743. DOI: 10.3389/fnsys.2024.1302429.


Associations of habitual sedentary time with executive functioning and short-term memory in 7th and 8th grade adolescents.

Van Oeckel V, Poppe L, Deforche B, Brondeel R, Miatton M, Verloigne M BMC Public Health. 2024; 24(1):495.

PMID: 38365719 PMC: 10870470. DOI: 10.1186/s12889-024-18014-x.


Cognitive training and remediation interventions for substance use disorders: a Delphi consensus study.

Verdejo-Garcia A, Rezapour T, Giddens E, Zonoozi A, Rafei P, Berry J Addiction. 2022; 118(5):935-951.

PMID: 36508168 PMC: 10073279. DOI: 10.1111/add.16109.