» Articles » PMID: 9405377

Solution Structure of a GAAA Tetraloop Receptor RNA

Overview
Journal EMBO J
Date 1998 Feb 21
PMID 9405377
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.

Citing Articles

Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer.

Shin J, Choi S, An S, Bang K, Song H, Suh J Nucleic Acids Res. 2025; 53(1.

PMID: 39777471 PMC: 11705072. DOI: 10.1093/nar/gkae1296.


High-throughput determination of RNA tertiary contact thermodynamics by quantitative DMS chemical mapping.

Lange B, Gil R, Anderson G, Yesselman J Nucleic Acids Res. 2024; 52(16):9953-9965.

PMID: 39082277 PMC: 11381326. DOI: 10.1093/nar/gkae633.


Acylation probing of "generic" RNA libraries reveals critical influence of loop constraints on reactivity.

Xiao L, Fang L, Kool E Cell Chem Biol. 2022; 29(8):1341-1352.e8.

PMID: 35662395 PMC: 9391288. DOI: 10.1016/j.chembiol.2022.05.005.


Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch.

Mitchell C, Polanco J, Dewald L, Kress D, Jaeger L, Grabow W Nucleic Acids Res. 2019; 47(12):6439-6451.

PMID: 31045210 PMC: 6614920. DOI: 10.1093/nar/gkz304.


Deducing putative ancestral forms of GNRA/receptor interactions from the ribosome.

Calkins E, Zakrevsky P, Keleshian V, Aguilar E, Geary C, Jaeger L Nucleic Acids Res. 2018; 47(1):480-494.

PMID: 30418638 PMC: 6326782. DOI: 10.1093/nar/gky1111.


References
1.
Robertus J, Ladner J, Finch J, Rhodes D, Brown R, Clark B . Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974; 250(467):546-51. DOI: 10.1038/250546a0. View

2.
Chou S, Zhu L, Reid B . Sheared purine x purine pairing in biology. J Mol Biol. 1997; 267(5):1055-67. DOI: 10.1006/jmbi.1997.0914. View

3.
SKLENAR V, Miyashiro H, Zon G, Miles H, Bax A . Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett. 1986; 208(1):94-8. DOI: 10.1016/0014-5793(86)81539-3. View

4.
Burke J, Belfort M, Cech T, Davies R, Schweyen R, Shub D . Structural conventions for group I introns. Nucleic Acids Res. 1987; 15(18):7217-21. PMC: 306243. DOI: 10.1093/nar/15.18.7217. View

5.
Milligan J, Groebe D, Witherell G, Uhlenbeck O . Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987; 15(21):8783-98. PMC: 306405. DOI: 10.1093/nar/15.21.8783. View