» Articles » PMID: 9385644

Alteration of T4 Lysozyme Structure by Second-site Reversion of Deleterious Mutations

Overview
Journal Protein Sci
Specialty Biochemistry
Date 1998 Feb 12
PMID 9385644
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations that suppress the defects introduced into T4 lysozyme by single amino acid substitutions were isolated and characterized. Among 53 primary sites surveyed, 8 yielded second-site revertants; a total of 18 different mutants were obtained. Most of the restorative mutations exerted global effects, generally increasing lysozyme function in a number of primary mutant contexts. Six of them were more specific, suppressing only certain specific deleterious primary substitutions, or diminishing the function of lysozymes bearing otherwise nondeleterious primary substitutions. Some variants of proteins bearing primary substitutions at the positions of Asp 20 and Ala 98 are inferred to have significantly altered structures.

Citing Articles

Co-evolution of interacting proteins through non-contacting and non-specific mutations.

Ding D, Green A, Wang B, Lite T, Weinstein E, Marks D Nat Ecol Evol. 2022; 6(5):590-603.

PMID: 35361892 PMC: 9090974. DOI: 10.1038/s41559-022-01688-0.


Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding.

Starr T, Greaney A, Hilton S, Ellis D, Crawford K, Dingens A Cell. 2020; 182(5):1295-1310.e20.

PMID: 32841599 PMC: 7418704. DOI: 10.1016/j.cell.2020.08.012.


Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding.

Starr T, Greaney A, Hilton S, Crawford K, Navarro M, Bowen J bioRxiv. 2020; .

PMID: 32587970 PMC: 7310626. DOI: 10.1101/2020.06.17.157982.


Consensus protein design.

Porebski B, Buckle A Protein Eng Des Sel. 2016; 29(7):245-51.

PMID: 27274091 PMC: 4917058. DOI: 10.1093/protein/gzw015.


Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase.

Cha H, Jang D, Kim Y, Hong B, Woo J, Kim K Mol Cells. 2013; 36(1):39-46.

PMID: 23740430 PMC: 3887930. DOI: 10.1007/s10059-013-0013-1.


References
1.
Poteete A, Sun D, Nicholson H, Matthews B . Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991; 30(5):1425-32. DOI: 10.1021/bi00219a037. View

2.
Baldwin E, Xu J, Hajiseyedjavadi O, Baase W, Matthews B . Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme. J Mol Biol. 1996; 259(3):542-59. DOI: 10.1006/jmbi.1996.0338. View

3.
Daopin S, Alber T, Baase W, Wozniak J, Matthews B . Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme. J Mol Biol. 1991; 221(2):647-67. DOI: 10.1016/0022-2836(91)80079-a. View

4.
Soderlind E, Baase W, Wozniak J, Sauer U, Matthews B . Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991; 221(3):873-87. DOI: 10.1016/0022-2836(91)80181-s. View

5.
Anderson W, Grutter M, Remington S, Weaver L, Matthews B . Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. J Mol Biol. 1981; 147(4):523-43. DOI: 10.1016/0022-2836(81)90398-3. View