» Articles » PMID: 9327546

Moderate Concentrations of Ethanol Inhibit Endocytosis of the Yeast Maltose Transporter

Overview
Date 1997 Nov 5
PMID 9327546
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The maltose transporter in Saccharomyces cerevisiae is degraded in the vacuole after internalization by endocytosis upon nitrogen starvation in the presence of a fermentable substrate. This degradation, known as catabolite inactivation, is inhibited by the presence of moderate concentrations (2 to 6%, vol/vol) of ethanol. We have investigated the mechanism of this inactivation and have found that it is due to the inhibition of the internalization of the transporter by endocytosis. The results also indicate that this inhibition is due to alterations produced by ethanol in the organization of the plasma membrane which also affects to endocytosis of other plasma membrane proteins. Apparently, endocytosis is particularly sensitive to these alterations compared with other processes occurring at the plasma membrane.

Citing Articles

Lager Yeast Design Through Meiotic Segregation of a × Hybrid.

Krogerus K, Magalhaes F, Castillo S, Peddinti G, Vidgren V, De Chiara M Front Fungal Biol. 2023; 2:733655.

PMID: 37744092 PMC: 10512403. DOI: 10.3389/ffunb.2021.733655.


Beer fermentation performance and sugar uptake of -A novel option for low-alcohol beer.

Methner Y, Magalhaes F, Raihofer L, Zarnkow M, Jacob F, Hutzler M Front Microbiol. 2022; 13:1011155.

PMID: 36274745 PMC: 9581282. DOI: 10.3389/fmicb.2022.1011155.


Unique Brewing-Relevant Properties of a Strain of Isolated From Ash ().

Hutzler M, Michel M, Kunz O, Kuusisto T, Magalhaes F, Krogerus K Front Microbiol. 2021; 12:645271.

PMID: 33868204 PMC: 8044551. DOI: 10.3389/fmicb.2021.645271.


A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains.

Krogerus K, Magalhaes F, Kuivanen J, Gibson B Appl Microbiol Biotechnol. 2019; 103(18):7597-7615.

PMID: 31346683 PMC: 6719335. DOI: 10.1007/s00253-019-10021-y.


Biocompatibility assessment of single-walled carbon nanotubes using Saccharomyces cerevisiae as a model organism.

Zhu S, Luo F, Li J, Zhu B, Wang G J Nanobiotechnology. 2018; 16(1):44.

PMID: 29695232 PMC: 5916727. DOI: 10.1186/s12951-018-0370-1.


References
1.
GRENSON M, MOUSSET M, Wiame J, Bechet J . Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966; 127(2):325-38. DOI: 10.1016/0304-4165(66)90387-4. View

2.
Schatz G, Klima J . TRIPHOSPHOPYRIDINE NUCLEOTIDE: CYTOCHROME C REDUCTASE OF SACCHAROMYCES CEREVISIAE: A "MICROSOMAL" ENZYME. Biochim Biophys Acta. 1964; 81:448-61. DOI: 10.1016/0926-6569(64)90130-0. View

3.
Lagunas R, Dominguez C, Busturia A, Saez M . Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems. J Bacteriol. 1982; 152(1):19-25. PMC: 221369. DOI: 10.1128/jb.152.1.19-25.1982. View

4.
GRENSON M . Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem. 1983; 133(1):135-9. DOI: 10.1111/j.1432-1033.1983.tb07438.x. View

5.
Serrano R . In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 1983; 156(1):11-4. DOI: 10.1016/0014-5793(83)80237-3. View