Martinez M, Kiselar J, Wang B, Sadalge D, Zawadzke L, Taherbhoy A
ACS Bio Med Chem Au. 2024; 4(4):204-213.
PMID: 39184054
PMC: 11342342.
DOI: 10.1021/acsbiomedchemau.4c00009.
Corrado A, Toppazzini M, Vadi A, Malzone C, Galasso R, Donati A
Pharmaceutics. 2024; 16(3).
PMID: 38543314
PMC: 10975739.
DOI: 10.3390/pharmaceutics16030420.
Yassaghi G, Kukacka Z, Fiala J, Kavan D, Halada P, Volny M
Anal Chem. 2022; 94(28):9993-10002.
PMID: 35797180
PMC: 9311227.
DOI: 10.1021/acs.analchem.1c05476.
Espino J, Zhang Z, Jones L
J Proteome Res. 2020; 19(9):3708-3715.
PMID: 32506919
PMC: 7861136.
DOI: 10.1021/acs.jproteome.0c00245.
Espino J, King C, Jones L, Robinson R
Anal Chem. 2020; 92(11):7596-7603.
PMID: 32383586
PMC: 7815197.
DOI: 10.1021/acs.analchem.0c00174.
Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications.
Liu X, Zhang M, Gross M
Chem Rev. 2020; 120(10):4355-4454.
PMID: 32319757
PMC: 7531764.
DOI: 10.1021/acs.chemrev.9b00815.
Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool.
Johnson D, Di Stefano L, Jones L
J Biol Chem. 2019; 294(32):11969-11979.
PMID: 31262727
PMC: 6690683.
DOI: 10.1074/jbc.REV119.006218.
Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale.
Kaur U, Meng H, Lui F, Ma R, Ogburn R, Johnson J
J Proteome Res. 2018; 17(11):3614-3627.
PMID: 30222357
PMC: 6524533.
DOI: 10.1021/acs.jproteome.8b00341.
Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins.
Chea E, Jones L
Protein Sci. 2018; 27(6):1047-1056.
PMID: 29575296
PMC: 5980583.
DOI: 10.1002/pro.3408.
Protein Footprinting Comes of Age: Mass Spectrometry for Biophysical Structure Assessment.
Wang L, Chance M
Mol Cell Proteomics. 2017; 16(5):706-716.
PMID: 28275051
PMC: 5417815.
DOI: 10.1074/mcp.O116.064386.
RNA protects a nucleoprotein complex against radiation damage.
Bury C, McGeehan J, Antson A, Carmichael I, Gerstel M, Shevtsov M
Acta Crystallogr D Struct Biol. 2016; 72(Pt 5):648-57.
PMID: 27139628
PMC: 4854314.
DOI: 10.1107/S2059798316003351.
Dynamic protein ligand interactions--insights from MS.
Schmidt C, Robinson C
FEBS J. 2014; 281(8):1950-64.
PMID: 24393119
PMC: 4154455.
DOI: 10.1111/febs.12707.
Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting.
Deperalta G, Alvarez M, Bechtel C, Dong K, McDonald R, Ling V
MAbs. 2012; 5(1):86-101.
PMID: 23247543
PMC: 3564890.
DOI: 10.4161/mabs.22964.
Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting.
Wang L, Chance M
Anal Chem. 2011; 83(19):7234-41.
PMID: 21770468
PMC: 3184339.
DOI: 10.1021/ac200567u.
Future directions of structural mass spectrometry using hydroxyl radical footprinting.
Kiselar J, Chance M
J Mass Spectrom. 2010; 45(12):1373-82.
PMID: 20812376
PMC: 3012749.
DOI: 10.1002/jms.1808.
Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
Orban T, Gupta S, Palczewski K, Chance M
Biochemistry. 2010; 49(5):827-34.
PMID: 20047303
PMC: 2819031.
DOI: 10.1021/bi901889t.
Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage.
Barciszewska M, Rapp G, Betzel C, Erdmann V, Barciszewski J
Mol Biol Rep. 2002; 28(2):103-10.
PMID: 11931387
DOI: 10.1023/a:1017951120531.