» Articles » PMID: 9251226

Reductive Dehalogenation of Halocarboxylic Acids by the Phototrophic Genera Rhodospirillum and Rhodopseudomonas

Overview
Date 1997 Aug 1
PMID 9251226
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Type strains of the purple nonsulfur species Rhodospirillum rubrum, Rhodospirillum photometricum, and Rhodopseudomonas palustris grew phototrophically on a number of two- and three-carbon halocarboxylic acids in the presence of CO2, by reductive dehalogenation and assimilation of the resulting acid. Strains of each of these species were able to grow on chloroacetic, 2-bromopropionic, 2-chloropropionic, and 3-chloropropionic acids at a concentration of 2 mM. Only R. palustris DSM 123 was able to grow on bromoacetic acid and then only at a reduced concentration of 1 mM. R. palustris ATCC 33872 (formerly R. rutila) was unable to grow on any of the substrates tested. The ability of these organisms to utilize halocarboxylic acids indicates that they may have a significant role to play in the removal of these environmental pollutants from illuminated anaerobic habitats such as lakes, waste lagoons, sediments of ditches and ponds, mud, and moist soil.

Citing Articles

Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants.

Dhar K, Venkateswarlu K, Megharaj M World J Microbiol Biotechnol. 2023; 39(10):283.

PMID: 37594588 PMC: 10439078. DOI: 10.1007/s11274-023-03729-7.


Genomic and Phylogenetic Characterization of sp. nov., Isolated from the Hell Creek Watershed (Nebraska).

Humphrey C, Burnett N, Dubey S, Kyndt J Microorganisms. 2022; 10(10).

PMID: 36296300 PMC: 9611603. DOI: 10.3390/microorganisms10102024.


Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds.

Atashgahi S, Liebensteiner M, Janssen D, Smidt H, Stams A, Sipkema D Front Microbiol. 2019; 9:3079.

PMID: 30619161 PMC: 6299022. DOI: 10.3389/fmicb.2018.03079.


Draft Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodopseudomonas palustris XCP.

Rayyan A, Meyer T, Kyndt J Microbiol Resour Announc. 2018; 7(4).

PMID: 30533875 PMC: 6256420. DOI: 10.1128/MRA.00855-18.


Metagenome-Assembled Genome Sequence of Strain ELI 1980, Commercialized as a Biostimulant.

Crovadore J, Xu S, Chablais R, Cochard B, Lukito D, Calmin G Genome Announc. 2017; 5(18).

PMID: 28473374 PMC: 5477182. DOI: 10.1128/genomeA.00221-17.


References
1.
Harwood C, Gibson J . Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol. 1988; 54(3):712-7. PMC: 202530. DOI: 10.1128/aem.54.3.712-717.1988. View

2.
Mohn W, Tiedje J . Microbial reductive dehalogenation. Microbiol Rev. 1992; 56(3):482-507. PMC: 372880. DOI: 10.1128/mr.56.3.482-507.1992. View

3.
Wright G, Madigan M . Photocatabolism of Aromatic Compounds by the Phototrophic Purple Bacterium Rhodomicrobium vannielii. Appl Environ Microbiol. 1991; 57(7):2069-73. PMC: 183523. DOI: 10.1128/aem.57.7.2069-2073.1991. View

4.
van der Woude B, de Boer M, van der Put N, van der Geld F, Prins R, Gottschal J . Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria. FEMS Microbiol Lett. 1994; 119(1-2):199-207. DOI: 10.1111/j.1574-6968.1994.tb06889.x. View

5.
Omori T, Alexander M . Bacterial and spontaneous dehalogenation of organic compounds. Appl Environ Microbiol. 1978; 35(3):512-6. PMC: 242871. DOI: 10.1128/aem.35.3.512-516.1978. View