» Articles » PMID: 9246758

Regulation of Carbon Metabolism in Gram-positive Bacteria by Protein Phosphorylation

Overview
Publisher Springer
Specialty Microbiology
Date 1997 Jan 1
PMID 9246758
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The main function of the bacterial phosphotransferase system is to transport and to phosphorylate mono- and disaccharides as well as sugar alcohols. However, the phosphotransferase system is also involved in regulation of carbon metabolism. In Gram-positive bacteria, it is implicated in carbon catabolite repression and regulation of expression of catabolic genes by controlling either catabolic enzyme activities, transcriptional activators or antiterminators. All these different regulations follow a protein phosphorylation mechanism.

Citing Articles

Ribose utilization by the human commensal Bifidobacterium breve UCC2003.

Pokusaeva K, Neves A, Zomer A, OConnell-Motherway M, MacSharry J, Curley P Microb Biotechnol. 2011; 3(3):311-23.

PMID: 21255330 PMC: 3815373. DOI: 10.1111/j.1751-7915.2009.00152.x.


Genetics of L-sorbose transport and metabolism in Lactobacillus casei.

Yebra M, VEYRAT A, Santos M, Perez-Martinez G J Bacteriol. 1999; 182(1):155-63.

PMID: 10613875 PMC: 94252. DOI: 10.1128/JB.182.1.155-163.2000.


Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations.

Gorke B, Rak B EMBO J. 1999; 18(12):3370-9.

PMID: 10369677 PMC: 1171417. DOI: 10.1093/emboj/18.12.3370.


Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants.

Bettenbrock K, Siebers U, Ehrenreich P, Alpert C J Bacteriol. 1998; 181(1):225-30.

PMID: 9864334 PMC: 103553. DOI: 10.1128/JB.181.1.225-230.1999.


Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system.

Bachem S, Stulke J J Bacteriol. 1998; 180(20):5319-26.

PMID: 9765562 PMC: 107579. DOI: 10.1128/JB.180.20.5319-5326.1998.


References
1.
Houman F, Wright A . Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell. 1989; 58(5):847-55. DOI: 10.1016/0092-8674(89)90937-9. View

2.
Gay P, Delobbe A . Fructose transport in Bacillus subtilis. Eur J Biochem. 1977; 79(2):363-73. DOI: 10.1111/j.1432-1033.1977.tb11817.x. View

3.
Reizer J, Novotny M, Panos C, Saier Jr M . Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J Bacteriol. 1983; 156(1):354-61. PMC: 215089. DOI: 10.1128/jb.156.1.354-361.1983. View

4.
Deutscher J, Kessler U, Alpert C, Hengstenberg W . Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?. Biochemistry. 2011; 23(19):4455-60. DOI: 10.1021/bi00314a033. View

5.
Schnetz K, Rak B . Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J. 1988; 7(10):3271-7. PMC: 454751. DOI: 10.1002/j.1460-2075.1988.tb03194.x. View