» Articles » PMID: 9196199

PCR-single-stranded Confirmational Polymorphism Analysis for Non-culture-based Subtyping of Meningococcal Strains in Clinical Specimens

Overview
Specialty Microbiology
Date 1997 Jul 1
PMID 9196199
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Subspecific typing of clinical meningococcal strains is important in the investigation of outbreaks and for disease surveillance. Serogrouping, typing, and subtyping of strains currently require isolation of a meningococcus from one or more clinical specimens. However, the increasing widespread practice of preadmission administration of parenteral antibiotics has resulted in a decrease in the frequency of positive cultures obtained from blood and cerebrospinal fluid. Confirmation of meningococcal disease can be obtained by meningococcus-specific PCR from both cerebrospinal fluid (H. Ni et al., Lancet 340:1432-1434, 1992) and peripheral blood (J. Newcombe et al., J. Clin. Microbiol. 34:1637-1640, 1996) specimens. However, current PCR protocols do not yield epidemiologically useful typing information. We report here the use of PCR-single-stranded confirmational polymorphism (PCR-SSCP) analysis to amplify and type meningococcal DNA present in clinical specimens. PCR-SSCP analysis with the VR1 region of the Neisseria meningitidis porA gene as the target produced unique banding patterns for each serosubtype. Direct PCR-SSCP of clinical specimens can therefore provide typing data that can be used to investigate the epidemiology of clusters of cases and outbreaks and for disease surveillance in situations in which culture of patient specimens proves negative.

Citing Articles

Pre-admission antibiotics for suspected cases of meningococcal disease.

Sudarsanam T, Rupali P, Tharyan P, Abraham O, Thomas K Cochrane Database Syst Rev. 2017; 6:CD005437.

PMID: 28613408 PMC: 6481530. DOI: 10.1002/14651858.CD005437.pub4.


Prospective study of a real-time PCR that is highly sensitive, specific, and clinically useful for diagnosis of meningococcal disease in children.

Bryant P, Li H, Zaia A, Griffith J, Hogg G, Curtis N J Clin Microbiol. 2004; 42(7):2919-25.

PMID: 15243039 PMC: 446275. DOI: 10.1128/JCM.42.7.2919-2925.2004.


Update on meningococcal disease with emphasis on pathogenesis and clinical management.

van Deuren M, Brandtzaeg P, van der Meer J Clin Microbiol Rev. 2000; 13(1):144-66, table of contents.

PMID: 10627495 PMC: 88937. DOI: 10.1128/CMR.13.1.144.


Clonal distribution of invasive Neisseria meningitidis isolates from the Norwegian county of Telemark, 1987 to 1995.

Aakre R, Jenkins A, Kristiansen B, Froholm L J Clin Microbiol. 1998; 36(9):2623-8.

PMID: 9705404 PMC: 105174. DOI: 10.1128/JCM.36.9.2623-2628.1998.

References
1.
Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston M . Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993; 341(8846):647-50. DOI: 10.1016/0140-6736(93)90417-f. View

2.
Woolford A, Dale J . Simplified procedures for detection of amplified DNA using fluorescent label incorporation and reverse probing. FEMS Microbiol Lett. 1992; 78(2-3):311-6. DOI: 10.1016/0378-1097(92)90046-q. View

3.
Muralidhar B, Steinman C . Design and characterization of PCR primers for detection of pathogenic Neisseriae. Mol Cell Probes. 1994; 8(1):55-61. DOI: 10.1006/mcpr.1994.1008. View

4.
Suker J, Feavers I, Achtman M, Morelli G, Wang J, Maiden M . The porA gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation. Mol Microbiol. 1994; 12(2):253-65. DOI: 10.1111/j.1365-2958.1994.tb01014.x. View

5.
Milagres L, Ramos S, Sacchi C, Melles C, Vieira V, Sato H . Immune response of Brazilian children to a Neisseria meningitidis serogroup B outer membrane protein vaccine: comparison with efficacy. Infect Immun. 1994; 62(10):4419-24. PMC: 303125. DOI: 10.1128/iai.62.10.4419-4424.1994. View