» Articles » PMID: 9172367

Catalytic Properties of the Cellulose-binding Endoglucanase F from Fibrobacter Succinogenes S85

Overview
Date 1997 Jun 1
PMID 9172367
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The celF gene from the predominant cellulolytic ruminal bacterium Fibrobacter succinogenes encodes a 118.3-kDa cellulose-binding endoglucanase, endoglucanase F (EGF). This enzyme possesses an N-terminal cellulose-binding domain and a C-terminal catalytic domain. The purified catalytic domain displayed an activity profile typical of an endoglucanase, with high catalytic activity on carboxymethyl cellulose and barley beta-glucan. Immunoblotting of EGF and the formerly characterized endoglucanase 2 (EG2) from F. succinogenes with antibodies prepared against each of the enzymes demonstrated that EGF and EG2 contain cross-reactive epitopes. This data in conjunction with evidence that the proteins are the same size, share a 19-residue internal amino acid sequence, possess similar catalytic properties, and both bind to cellulose allows the conclusion that celF codes for EG2.

Citing Articles

Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85.

Raut M, Couto N, Karunakaran E, Biggs C, Wright P Sci Rep. 2019; 9(1):16542.

PMID: 31719545 PMC: 6851124. DOI: 10.1038/s41598-019-52675-8.


Whole-Genome Sequence of the Anaerobic Isosaccharinic Acid Degrading Isolate, Macellibacteroides fermentans Strain HH-ZS.

Rout S, Salah Z, Charles C, Humphreys P Genome Biol Evol. 2017; 9(8):2140-2144.

PMID: 28859355 PMC: 5591956. DOI: 10.1093/gbe/evx151.


Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85.

Wu C, Spike T, Klingeman D, Rodriguez M, Bremer V, Brown S Sci Rep. 2017; 7(1):2277.

PMID: 28536480 PMC: 5442110. DOI: 10.1038/s41598-017-02628-w.


The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans.

Bouraoui H, Desrousseaux M, Ioannou E, Alvira P, Manai M, Remond C Biotechnol Biofuels. 2016; 9:140.

PMID: 27398094 PMC: 4939007. DOI: 10.1186/s13068-016-0550-x.


Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85.

Raut M, Karunakaran E, Mukherjee J, Biggs C, Wright P PLoS One. 2015; 10(10):e0141197.

PMID: 26492413 PMC: 4619616. DOI: 10.1371/journal.pone.0141197.


References
1.
Denman S, Xue G, Patel B . Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol. 1996; 62(6):1889-96. PMC: 167968. DOI: 10.1128/aem.62.6.1889-1896.1996. View

2.
Yague E, Beguin P, Aubert J . Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene. 1990; 89(1):61-7. DOI: 10.1016/0378-1119(90)90206-7. View

3.
Shima S, Igarashi Y, Kodama T . Nucleotide sequence analysis of the endoglucanase-encoding gene, celCCD, of Clostridium cellulolyticum. Gene. 1991; 104(1):33-8. DOI: 10.1016/0378-1119(91)90461-j. View

4.
Huang L, Forsberg C . Purification and Comparison of the Periplasmic and Extracellular Forms of the Cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol. 1988; 54(6):1488-93. PMC: 202684. DOI: 10.1128/aem.54.6.1488-1493.1988. View

5.
McGavin M, Forsberg C . Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succinogenes. J Bacteriol. 1989; 171(6):3310-5. PMC: 210051. DOI: 10.1128/jb.171.6.3310-3315.1989. View