» Articles » PMID: 9143706

Cellular Responses to Interferon-gamma

Overview
Date 1997 Jan 1
PMID 9143706
Citations 861
Authors
Affiliations
Soon will be listed here.
Abstract

Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.

Citing Articles

Integrated bulk and single-cell transcriptomic analysis unveiled a novel cuproptosis-related lipid metabolism gene molecular pattern and a risk index for predicting prognosis and antitumor drug sensitivity in breast cancer.

Zeng C, Xu C, Liu S, Wang Y, Wei Y, Qi Y Discov Oncol. 2025; 16(1):318.

PMID: 40085377 DOI: 10.1007/s12672-025-02044-x.


Understanding Host-Pathogen Interactions in Congenital Chagas Disease Through Transcriptomic Approaches.

Caceres T, Patino L, Ramirez J Pathogens. 2025; 14(2).

PMID: 40005483 PMC: 11858232. DOI: 10.3390/pathogens14020106.


Sepsis: the evolution of molecular pathogenesis concepts and clinical management.

Feng Z, Wang L, Yang J, Li T, Liao X, Kang Y MedComm (2020). 2025; 6(3):e70109.

PMID: 39991626 PMC: 11847631. DOI: 10.1002/mco2.70109.


The importance of inflammatory biomarkers in detecting and managing latent tuberculosis infection.

Gunasekaran H, Ranganathan U, Bethunaickan R Front Immunol. 2025; 16:1538127.

PMID: 39981231 PMC: 11839662. DOI: 10.3389/fimmu.2025.1538127.


mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii.

Kravets E, Poschmann G, Hansch S, Raba V, Weidtkamp-Peters S, Degrandi D PLoS One. 2025; 20(1):e0316209.

PMID: 39854420 PMC: 11761162. DOI: 10.1371/journal.pone.0316209.