» Articles » PMID: 9057267

Is the Input to a GABAergic or Cholinergic Synapse the Sole Asymmetry in Rabbit's Retinal Directional Selectivity?

Overview
Journal Vis Neurosci
Specialties Neurology
Ophthalmology
Date 1997 Jan 1
PMID 9057267
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property.

Citing Articles

Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses.

Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani G Elife. 2019; 8.

PMID: 30714905 PMC: 6377229. DOI: 10.7554/eLife.42392.


Dysregulation of visual motion inhibition in major depression.

Norton D, McBain R, Pizzagalli D, Cronin-Golomb A, Chen Y Psychiatry Res. 2016; 240:214-221.

PMID: 27111216 PMC: 4886228. DOI: 10.1016/j.psychres.2016.04.028.


GABAergic neurotransmission and retinal ganglion cell function.

Popova E J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015; 201(3):261-83.

PMID: 25656810 DOI: 10.1007/s00359-015-0981-z.


Visual stimulation reverses the directional preference of direction-selective retinal ganglion cells.

Rivlin-Etzion M, Wei W, Feller M Neuron. 2012; 76(3):518-25.

PMID: 23141064 PMC: 3496185. DOI: 10.1016/j.neuron.2012.08.041.


Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina.

Lee J, Lee K, Jeon C Acta Histochem Cytochem. 2012; 45(1):35-45.

PMID: 22489103 PMC: 3317494. DOI: 10.1267/ahc.11043.