Jimenez-Pompa A, Albillos A
Int J Mol Sci. 2024; 25(4).
PMID: 38396980
PMC: 10888968.
DOI: 10.3390/ijms25042304.
Gil A, Gonzalez-Velez V, Gutierrez L, Villanueva J
Curr Issues Mol Biol. 2024; 46(1):808-820.
PMID: 38248354
PMC: 10814139.
DOI: 10.3390/cimb46010052.
Villanueva J, Criado M, Gimenez-Molina Y, Gonzalez-Velez V, Gil A, Gutierrez L
Int J Mol Sci. 2022; 23(16).
PMID: 36012367
PMC: 9409273.
DOI: 10.3390/ijms23169101.
Wu T, Wang Y, Shi W, Zhang B, Raelson J, Yao Y
Front Genet. 2020; 11:539862.
PMID: 33329690
PMC: 7728919.
DOI: 10.3389/fgene.2020.539862.
Mussina K, Toktarkhanova D, Filchakova O
Cell Mol Neurobiol. 2020; 41(1):17-29.
PMID: 32335772
PMC: 11448595.
DOI: 10.1007/s10571-020-00846-x.
Progress in nicotinic receptor structural biology.
Gharpure A, Noviello C, Hibbs R
Neuropharmacology. 2020; 171:108086.
PMID: 32272141
PMC: 7255940.
DOI: 10.1016/j.neuropharm.2020.108086.
Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity.
Jall S, De Angelis M, Lundsgaard A, Fritzen A, Nicolaisen T, Klein A
Diabetologia. 2020; 63(6):1236-1247.
PMID: 32140744
PMC: 7228898.
DOI: 10.1007/s00125-020-05117-4.
CHRNA5/CHRNA3 gene cluster is a risk factor for lumbar disc herniation: a case-control study.
Yang X, Guo X, Huang Z, Da Y, Xing W, Li F
J Orthop Surg Res. 2019; 14(1):243.
PMID: 31362771
PMC: 6668080.
DOI: 10.1186/s13018-019-1254-2.
Human nicotinic receptors in chromaffin cells: characterization and pharmacology.
Albillos A, McIntosh J
Pflugers Arch. 2017; 470(1):21-27.
PMID: 29058146
PMC: 6446548.
DOI: 10.1007/s00424-017-2073-0.
Acetylcholine nicotinic receptor subtypes in chromaffin cells.
Criado M
Pflugers Arch. 2017; 470(1):13-20.
PMID: 28791474
DOI: 10.1007/s00424-017-2050-7.
α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition.
Cuny H, Yu R, Tae H, Kompella S, Adams D
Br J Pharmacol. 2017; 175(11):1855-1868.
PMID: 28477355
PMC: 5979624.
DOI: 10.1111/bph.13852.
The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na /Ca exchanger.
Lopez-Gil A, Nanclares C, Mendez-Lopez I, Martinez-Ramirez C, de Los Rios C, Padin-Nogueira J
J Physiol. 2016; 595(6):2129-2146.
PMID: 27982456
PMC: 5350476.
DOI: 10.1113/JP273339.
α-Conotoxins Identify the α3β4* Subtype as the Predominant Nicotinic Acetylcholine Receptor Expressed in Human Adrenal Chromaffin Cells.
Hone A, McIntosh J, Azam L, Lindstrom J, Lucero L, Whiteaker P
Mol Pharmacol. 2015; 88(5):881-93.
PMID: 26330550
PMC: 4613940.
DOI: 10.1124/mol.115.100982.
Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.
Li X, Toyohira Y, Horisita T, Satoh N, Takahashi K, Zhang H
Naunyn Schmiedebergs Arch Pharmacol. 2015; 388(12):1259-69.
PMID: 26257152
DOI: 10.1007/s00210-015-1161-y.
Nicotinic receptor Alpha7 expression during mouse adrenal gland development.
Gahring L, Myers E, Palumbos S, Rogers S
PLoS One. 2014; 9(8):e103861.
PMID: 25093893
PMC: 4122369.
DOI: 10.1371/journal.pone.0103861.
Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels.
Guerineau N, Desarmenien M, Carabelli V, Carbone E
J Mol Neurosci. 2012; 48(2):368-86.
PMID: 22252244
PMC: 3664358.
DOI: 10.1007/s12031-012-9707-7.
Native α6β4* nicotinic receptors control exocytosis in human chromaffin cells of the adrenal gland.
Perez-Alvarez A, Hernandez-Vivanco A, McIntosh J, Albillos A
FASEB J. 2011; 26(1):346-54.
PMID: 21917987
PMC: 3250250.
DOI: 10.1096/fj.11-190223.
Quercetin Inhibits α3β4 Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes.
Lee B, Hwang S, Choi S, Shin T, Kang J, Lee S
Korean J Physiol Pharmacol. 2011; 15(1):17-22.
PMID: 21461236
PMC: 3062079.
DOI: 10.4196/kjpp.2011.15.1.17.
Calcium signalling mediated through α7 and non-α7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release.
Del Barrio L, Egea J, Leon R, Romero A, Ruiz A, Montero M
Br J Pharmacol. 2010; 162(1):94-110.
PMID: 20840468
PMC: 3012409.
DOI: 10.1111/j.1476-5381.2010.01034.x.
Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity.
Colomer C, Olivos-Ore L, Vincent A, McIntosh J, Artalejo A, Guerineau N
J Neurosci. 2010; 30(19):6732-42.
PMID: 20463235
PMC: 2994257.
DOI: 10.1523/JNEUROSCI.4997-09.2010.