» Articles » PMID: 8939601

Analysis of Dishevelled Signalling Pathways During Xenopus Development

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 1996 Nov 1
PMID 8939601
Citations 137
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Recent studies have demonstrated that the Wnt, Frizzled and Notch proteins are involved in a variety of developmental processes in fly, worm, frog and mouse embryos. The Dishevelled (Dsh) protein is required for Drosophila cells to respond to Wingless, Notch and Frizzled signals, but the molecular mechanisms of its action are not well understood. Using the ability of a mutant form of the Xenopus homologue of Dsh (Xdsh) to block Wnt and Dsh signalling in a model system, this work attempts to clarify the role of the endogenous Xdsh during the early stages of vertebrate development.

Results: A mutant Xdsh (Xdd1) with an internal deletion of the conserved PDZ/DHR domain was constructed. Overexpression of Xdd1 mRNA in ventral blastomeres of Xenopus embryos strongly inhibited induction of secondary axes by the wild-type Xdsh and Xwnt8 mRNAs, but did not affect the axis-inducing ability of beta-catenin mRNA. These observations suggest that Xdd1 acts as a dominant-negative mutant. Dorsal expression of Xdd1 caused severe posterior truncations in the injected embryos, whereas wild-type Xdsh suppressed this phenotype. Xdd1 blocked convergent extension movements in ectodermal explants stimulated with mesoderm-inducing factors and in dorsal marginal zone explants, but did not affect mesoderm induction and differentiation.

Conclusions: A vertebrate homologue of Dsh is a necessary component of Wnt signal transduction and functions upstream of beta-catenin. These findings also establish a requirement for the PDZ domain in signal transduction by Xdsh, and suggest that endogenous Xdsh controls morphogenetic movements in the embryo.

Citing Articles

Dact1 induces Dishevelled oligomerization to facilitate binding partner switch and signalosome formation during convergent extension.

Angermeier A, Yu D, Huang Y, Marchetto S, Borg J, Chang C Nat Commun. 2025; 16(1):2425.

PMID: 40069199 PMC: 11897371. DOI: 10.1038/s41467-025-57658-0.


Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation.

Matsuda M, Sokol S J Cell Biol. 2025; 224(4).

PMID: 39951022 PMC: 11827586. DOI: 10.1083/jcb.202407025.


Centriole Translational Planar Polarity in Monociliated Epithelia.

Donati A, Schneider-Maunoury S, Vesque C Cells. 2024; 13(17.

PMID: 39272975 PMC: 11393834. DOI: 10.3390/cells13171403.


Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes.

Shi D J Dev Biol. 2024; 12(3).

PMID: 39189260 PMC: 11348223. DOI: 10.3390/jdb12030020.


Formin Binding Protein 1 (FNBP1) regulates non-canonical Wnt signaling and vertebrate gastrulation.

Zeni C, Komiya Y, Habas R Dev Biol. 2024; 515:18-29.

PMID: 38945423 PMC: 11317212. DOI: 10.1016/j.ydbio.2024.06.019.