» Articles » PMID: 8887566

Structure of Crystalline Escherichia Coli Methionyl-tRNA(f)Met Formyltransferase: Comparison with Glycinamide Ribonucleotide Formyltransferase

Overview
Journal EMBO J
Date 1996 Sep 2
PMID 8887566
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Formylation of the methionyl moiety esterified to the 3' end of tRNA(f)Met is a key step in the targeting of initiator tRNA towards the translation start machinery in prokaryotes. Accordingly, the presence of methionyl-tRNA(f)Met formyltransferase (FMT), the enzyme responsible for this formylation, is necessary for the normal growth of Escherichia coli. The present work describes the structure of crystalline E.coli FMT at 2.0 A, resolution. The protein has an N-terminal domain containing a Rossmann fold. This domain closely resembles that of the glycinamide ribonucleotide formyltransferase (GARF), an enzyme which, like FMT, uses N-10 formyltetrahydrofolate as formyl donor. However, FMT can be distinguished from GARF by a flexible loop inserted within its Rossmann fold. In addition, FMT possesses a C-terminal domain with a beta-barrel reminiscent of an OB fold. This latter domain provides a positively charged side oriented towards the active site. Biochemical evidence is presented for the involvement of these two idiosyncratic regions (the flexible loop in the N-terminal domain, and the C-terminal domain) in the binding of the tRNA substrate.

Citing Articles

Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems.

Thakur M, Breger J, Susumu K, Oh E, Spangler J, Medintz I PLoS One. 2022; 17(3):e0265274.

PMID: 35298538 PMC: 8929567. DOI: 10.1371/journal.pone.0265274.


Investigation of the Importance of Protein 3D Structure for Assessing Conservation of Lysine Acetylation Sites in Protein Homologs.

Jew K, Le V, Amaral K, Ta A, Nguyen May N, Law M Front Microbiol. 2022; 12:805181.

PMID: 35173693 PMC: 8843374. DOI: 10.3389/fmicb.2021.805181.


Structure of putative tumor suppressor ALDH1L1.

Tsybovsky Y, Sereda V, Golczak M, Krupenko N, Krupenko S Commun Biol. 2022; 5(1):3.

PMID: 35013550 PMC: 8748788. DOI: 10.1038/s42003-021-02963-9.


The Role of Single-Nucleotide Polymorphisms in the Function of Candidate Tumor Suppressor ALDH1L1.

Krupenko S, Horita D Front Genet. 2019; 10:1013.

PMID: 31737034 PMC: 6831610. DOI: 10.3389/fgene.2019.01013.


Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase.

Muraki N, Ishii K, Uchiyama S, Itoh S, Okumura H, Aono S Commun Biol. 2019; 2:385.

PMID: 31646188 PMC: 6802093. DOI: 10.1038/s42003-019-0631-z.


References
1.
Chen P, Stura E, Inglese J, Johnson D, Marolewski A, Benkovic S . Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 A resolution. A target enzyme for chemotherapy. J Mol Biol. 1992; 227(1):283-92. DOI: 10.1016/0022-2836(92)90698-j. View

2.
Guillon J, Meinnel T, Mechulam Y, Lazennec C, Blanquet S, Fayat G . Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA(fMet) formyltransferase. J Mol Biol. 1992; 224(2):359-67. DOI: 10.1016/0022-2836(92)91000-f. View

3.
Skala J, Van Dyck L, Purnelle B, Goffeau A . The sequence of an 8 kb segment on the left arm of chromosome II from Saccharomyces cerevisiae identifies five new open reading frames of unknown functions, two tRNA genes and two transposable elements. Yeast. 1992; 8(9):777-85. DOI: 10.1002/yea.320080911. View

4.
Nicholls A, Sharp K, Honig B . Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991; 11(4):281-96. DOI: 10.1002/prot.340110407. View

5.
Mangroo D, RajBhandary U . Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem. 1995; 270(20):12203-9. DOI: 10.1074/jbc.270.20.12203. View