» Articles » PMID: 885910

Release of Poly A(+) Messenger RNA from Rat Liver Rough Microsomes Upon Disassembly of Bound Polysomes

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 1977 Aug 1
PMID 885910
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.

Citing Articles

The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs.

Parker M, Balasubramaniam A, Sallee F, Parker S Front Genet. 2018; 9:66.

PMID: 29563925 PMC: 5850279. DOI: 10.3389/fgene.2018.00066.


Homoiterons and expansion in ribosomal RNAs.

Parker M, Sallee F, Park E, Parker S FEBS Open Bio. 2015; 5:864-76.

PMID: 26636029 PMC: 4637361. DOI: 10.1016/j.fob.2015.10.005.


Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum.

Jagannathan S, Hsu J, Reid D, Chen Q, Thompson W, Moseley A J Biol Chem. 2014; 289(37):25907-24.

PMID: 25063809 PMC: 4162190. DOI: 10.1074/jbc.M114.580688.


Visualization of endoplasmic reticulum localized mRNAs in mammalian cells.

Cui X, Palazzo A J Vis Exp. 2012; (70):e50066.

PMID: 23271194 PMC: 3575208. DOI: 10.3791/50066.


p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum.

Cui X, Zhang H, Palazzo A PLoS Biol. 2012; 10(5):e1001336.

PMID: 22679391 PMC: 3362647. DOI: 10.1371/journal.pbio.1001336.


References
1.
Devillers-Thiery A, Kindt T, Scheele G, Blobel G . Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A. 1975; 72(12):5016-20. PMC: 388866. DOI: 10.1073/pnas.72.12.5016. View

2.
Cardelli J, Long B, Pitot H . Direct association of messenger RNA labeled in the presence of fluoroorotate with membranes of the endoplasmic reticulum in rat liver. J Cell Biol. 1976; 70(1):47-58. PMC: 2109812. DOI: 10.1083/jcb.70.1.47. View

3.
Kemper B, Habener J, Ernst M, Potts Jr J, Rich A . Pre-proparathyroid hormone: analysis of radioactive tryptic peptides and amino acid sequence. Biochemistry. 1976; 15(1):15-9. DOI: 10.1021/bi00646a003. View

4.
Mechler B, Vassalli P . Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes. J Cell Biol. 1975; 67(1):25-37. PMC: 2109571. DOI: 10.1083/jcb.67.1.25. View

5.
Lande M, Adesnik M, Sumida M, Tashiro Y, Sabatini D . Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts. J Cell Biol. 1975; 65(3):513-28. PMC: 2109435. DOI: 10.1083/jcb.65.3.513. View