» Articles » PMID: 8849877

C-terminal Deletions Can Suppress Temperature-sensitive Mutations and Change Dominance in the Phage Mu Repressor

Overview
Journal Genetics
Specialty Genetics
Date 1996 Mar 1
PMID 8849877
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q) and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup degrees hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup degrees hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179-V196), binds Mu operator DNA more stably at 42 degrees in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.

Citing Articles

Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility.

Marshall-Batty K, Nakai H J Biol Chem. 2008; 283(14):9060-70.

PMID: 18230617 PMC: 2431027. DOI: 10.1074/jbc.M705508200.


Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium.

Champion K, Higgins N J Bacteriol. 2007; 189(16):5839-49.

PMID: 17400739 PMC: 1952050. DOI: 10.1128/JB.00083-07.


The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage.

Ranquet C, Geiselmann J, Toussaint A Proc Natl Acad Sci U S A. 2001; 98(18):10220-5.

PMID: 11517307 PMC: 56942. DOI: 10.1073/pnas.171620598.


The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system.

Gottesman S, Roche E, Zhou Y, Sauer R Genes Dev. 1998; 12(9):1338-47.

PMID: 9573050 PMC: 316764. DOI: 10.1101/gad.12.9.1338.

References
1.
Shapiro J . Differential action and differential expression of DNA polymerase I during Escherichia coli colony development. J Bacteriol. 1992; 174(22):7262-72. PMC: 207420. DOI: 10.1128/jb.174.22.7262-7272.1992. View

2.
Ball C, Osuna R, Ferguson K, Johnson R . Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol. 1992; 174(24):8043-56. PMC: 207543. DOI: 10.1128/jb.174.24.8043-8056.1992. View

3.
Geuskens V, Desmet L, Toussaint A . Virulence in bacteriophage Mu: a case of trans-dominant proteolysis by the Escherichia coli Clp serine protease. EMBO J. 1992; 11(13):5121-7. PMC: 556990. DOI: 10.1002/j.1460-2075.1992.tb05619.x. View

4.
Finkel S, Johnson R . The Fis protein: it's not just for DNA inversion anymore. Mol Microbiol. 1992; 6(22):3257-65. DOI: 10.1111/j.1365-2958.1992.tb02193.x. View

5.
Shapiro J . A role for the Clp protease in activating Mu-mediated DNA rearrangements. J Bacteriol. 1993; 175(9):2625-31. PMC: 204564. DOI: 10.1128/jb.175.9.2625-2631.1993. View