» Articles » PMID: 8841727

A Comparison of Analytical Methods for the Study of Fractional Brownian Motion

Overview
Journal Ann Biomed Eng
Date 1996 Jul 1
PMID 8841727
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Fractional Brownian motion (FBM) provides a useful model for many physical phenomena demonstrating long-term dependencies and l/f-type spectral behavior. In this model, only one parameter is necessary to describe the complexity of the data, H, the Hurst exponent. FBM is a nonstationary random function not well suited to traditional power spectral analysis however. In this paper we discuss alternative methods for the analysis of FBM, in the context of real-time biomedical signal processing. Regression-based methods utilizing the power spectral density (PSD), the discrete wavelet transform (DWT), and dispersive analysis (DA) are compared for estimation accuracy and precision on synthesized FBM datasets. The performance of a maximum likelihood estimator for H, theoretically the best possible estimator, are presented for reference. Of the regression-based methods, it is found that the estimates provided by the DWT method have better accuracy and precision for H > 0.5, but become biased for low values of H. The DA method is most accurate for H < 0.5 for a 256-point data window size. The PSD method was biased for both H < 0.5 and H > 0.5.

Citing Articles

Poincaré Plot Nonextensive Distribution Entropy: A New Method for Electroencephalography (EEG) Time Series.

Chen X, Xu G, Du C, Zhang S, Zhang X, Teng Z Sensors (Basel). 2022; 22(16).

PMID: 36016044 PMC: 9415957. DOI: 10.3390/s22166283.


Heart rate variability and nonlinear dynamic analysis in patients with stress-induced cardiomyopathy.

Krstacic G, Parati G, Gamberger D, Castiglioni P, Krstacic A, Steiner R Med Biol Eng Comput. 2012; 50(10):1037-46.

PMID: 22903288 DOI: 10.1007/s11517-012-0947-z.


The "Chaos Theory" and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease?.

Krstacic G, Krstacic A, Smalcelj A, Milicic D, Jembrek-Gostovic M Ann Noninvasive Electrocardiol. 2007; 12(2):130-6.

PMID: 17593181 PMC: 6932248. DOI: 10.1111/j.1542-474X.2007.00151.x.


Investigating body motion patterns in patients with Parkinson's disease using matching pursuit algorithm.

Sekine M, Akay M, Tamura T, Higashi Y, Fujimoto T Med Biol Eng Comput. 2004; 42(1):30-6.

PMID: 14977220 DOI: 10.1007/BF02351008.


Multi- and monofractal indices of short-term heart rate variability.

Fischer R, Akay M, Castiglioni P, Di Rienzo M Med Biol Eng Comput. 2003; 41(5):543-9.

PMID: 14572004 DOI: 10.1007/BF02345316.

References
1.
Christini D, Kulkarni A, Rao S, Stutman E, Bennett F, Hausdorff J . Influence of autoregressive model parameter uncertainty on spectral estimates of heart rate dynamics. Ann Biomed Eng. 1995; 23(2):127-34. DOI: 10.1007/BF02368320. View

2.
DeBoer R, Karemaker J, Strackee J . Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans Biomed Eng. 1984; 31(4):384-7. DOI: 10.1109/TBME.1984.325351. View

3.
Akay M . Wavelets in biomedical engineering. Ann Biomed Eng. 1995; 23(5):531-42. DOI: 10.1007/BF02584453. View

4.
Kobayashi M, Musha T . 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng. 1982; 29(6):456-7. DOI: 10.1109/TBME.1982.324972. View

5.
Lundahl T, Ohley W, Kay S, SIFFERT R . Fractional brownian motion: a maximum likelihood estimator and its application to image texture. IEEE Trans Med Imaging. 1986; 5(3):152-61. DOI: 10.1109/TMI.1986.4307764. View