» Articles » PMID: 8810520

The ChsD and ChsE Genes of Aspergillus Nidulans and Their Roles in Chitin Synthesis

Overview
Date 1996 Jun 1
PMID 8810520
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Two chitin synthase genes, chsD and chsE, were identified from the filamentous ascomycete Aspergillus nidulans. In a region that is conserved among chitin synthases, the deduced amino acid sequences of chsD and chsE have greater sequence identity to the polypeptides encoded by the Saccharomyces cerevisiae CHS3 gene (also named CSD2, CAL1, DIT101, and KTI1) and the Candida albicans CHSE gene than to other chitin synthases. chsE is more closely related to the CHS3 genes, and this group constitutes the class IV chitin synthases. chsD differs sufficiently from the other classes of fungal chitin synthase genes to constitute a new class, class V. Each of the wild-type A. nidulans genes was replaced by a copy that had a substantial fraction of its coding region replaced by the A. nidulans argB gene. Hyphae from both chsD and chsE disruptants contain about 60-70% of the chitin content of wild-type hyphae. The morphology and development of chsE disruptants are indistinguishable from those of wild type. Nearly all of the conidia of chsD disruption strains swell excessively and lyse when germinated in low osmotic strength medium. Conidia that do not lyse produce hyphae that initially have normal morphology but subsequently lyse at subapical locations and show ballooned walls along their length. The lysis of germinating conidia and hyphae of chsD disruptants is prevented by the presence of osmotic stabilizers in the medium. Conidiophore vesicles from chsD disruption strains frequently swell excessively and lyse, resulting in colonies that show reduced conidiation. These properties indicate that chitin synthesized by the chsD-encoded isozyme contributes to the rigidity of the walls of germinating conidia, of the subapical region of hyphae, and of conidiophore vesicles, but is not necessary for normal morphology of these cells. The phenotypes of chsD and chsE disruptants indicate that the chitin synthesized by each isozyme serves a distinct function. The propensity of a chsD disruptant for osmotically induced lysis was compared to that of strains carrying two other mutations (tsE6 and orlA::trpC) which also result in reduced chitin content vegetative cell lysis. The concentration of osmotic stabilizer necessary to remedy the lysis of strains carrying the three mutations is inversely related to the chitin content of each strain. This finding directly demonstrates the importance of chitin to the integrity of the cell wall and indicates that agents that inhibit the chsD-encoded chitin synthase could be useful anti-Aspergillus drugs.

Citing Articles

Unexpected Distribution of Chitin and across Soft-Bodied Cnidarians.

Vandepas L, Tassia M, Halanych K, Amemiya C Biomolecules. 2023; 13(5).

PMID: 37238647 PMC: 10216261. DOI: 10.3390/biom13050777.


Chitin Biosynthesis in Species.

Brauer V, Pessoni A, Freitas M, Cavalcanti-Neto M, Ries L, Almeida F J Fungi (Basel). 2023; 9(1).

PMID: 36675910 PMC: 9865612. DOI: 10.3390/jof9010089.


Protein kinase A participates in hyphal and appressorial development by targeting Efg1-mediated transcription of a Rab GTPase in Setosphaeria turcica.

Liu Y, Shen S, Hao Z, Wang Q, Zhang Y, Zhao Y Mol Plant Pathol. 2022; 23(11):1608-1619.

PMID: 35929228 PMC: 9562828. DOI: 10.1111/mpp.13253.


The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi.

Lim J, Park H Front Cell Infect Microbiol. 2019; 9:213.

PMID: 31275866 PMC: 6593044. DOI: 10.3389/fcimb.2019.00213.


Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense.

Li W, Wang X, Li C, Sun J, Li S, Peng M BMC Genomics. 2019; 20(1):519.

PMID: 31234790 PMC: 6591919. DOI: 10.1186/s12864-019-5902-z.