» Articles » PMID: 8808928

The Non-penicillin-binding Module of the Tripartite Penicillin-binding Protein 3 of Escherichia Coli is Required for Folding And/or Stability of the Penicillin-binding Module and the Membrane-anchoring Module Confers Cell Septation Activity on The...

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1996 Sep 1
PMID 8808928
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The ftsI-encoded multimodular class B penicillin-binding protein 3 (PBP3) is a key element of the cell septation machinery of Escherichia coli. Altered ftsI genes were overexpressed, and the gene products were analyzed with respect to the level of production, stability, penicillin affinity, and cell septation activity. In contrast to the serine beta-lactamases and low-molecular-mass PBPs which are autonomous folding entities, the S-259-to-V-577 penicillin-binding module of M-1-to-V-577 PBP3 lacks the amino acid sequence information for correct folding. The missing piece of information is provided by the associated G-57-to-E-258 non-penicillin-binding module which functions as a noncleaved, pseudointramolecular chaperone. Key elements of the folding information reside within the motif 1-containing R-60-to-W-110 polypeptide segment and within G-188-to-D-197 motif 3 of the n-PB module. The intermodule interaction is discussed in the light of the known three-dimensional structure (at 3.5-A [0.35-nm] resolution) of the analogous class B PBP2x of Streptococcus pneumoniae (S. Pares, N. Mouz, Y. Pétillot, R. Hakenbeck, and O. Dideberg, Nature Struct. Biol. 3:284-289, 1996). Correct folding and adoption of a stable penicillin-binding conformation are necessary but not sufficient to confer cell septation activity to PBP3 in exponentially growing cells. The in vivo activity of PBP3 also depends on the M-1-to-E-56 amino-terminal module which encompasses the cytosol, the membrane, and the periplasm and which functions as a noncleaved pseudo-signal peptide.

Citing Articles

Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.

Dik D, Fisher J, Mobashery S Chem Rev. 2018; 118(12):5952-5984.

PMID: 29847102 PMC: 6855303. DOI: 10.1021/acs.chemrev.8b00277.


Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa.

Legaree B, Clarke A J Bacteriol. 2008; 190(20):6922-6.

PMID: 18708507 PMC: 2566182. DOI: 10.1128/JB.00934-08.


Overproduction of penicillin-binding protein 2 and its inactive variants causes morphological changes and lysis in Escherichia coli.

Legaree B, Adams C, Clarke A J Bacteriol. 2007; 189(14):4975-83.

PMID: 17513478 PMC: 1951868. DOI: 10.1128/JB.00207-07.


Bacterial cell wall synthesis: new insights from localization studies.

Scheffers D, Pinho M Microbiol Mol Biol Rev. 2005; 69(4):585-607.

PMID: 16339737 PMC: 1306805. DOI: 10.1128/MMBR.69.4.585-607.2005.


A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA.

Goranov A, Katz L, Breier A, Burge C, Grossman A Proc Natl Acad Sci U S A. 2005; 102(36):12932-7.

PMID: 16120674 PMC: 1200305. DOI: 10.1073/pnas.0506174102.


References
1.
Charlier P, Buisson G, Dideberg O, Wierenga J, Keck W, Laible G . Crystallization of a genetically engineered water-soluble primary penicillin target enzyme. The high molecular mass PBP2x of Streptococcus pneumoniae. J Mol Biol. 1993; 232(3):1007-9. DOI: 10.1006/jmbi.1993.1452. View

2.
Nagasawa H, Sakagami Y, Suzuki A, Suzuki H, Hara H, Hirota Y . Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J Bacteriol. 1989; 171(11):5890-3. PMC: 210450. DOI: 10.1128/jb.171.11.5890-5893.1989. View

3.
Fraipont C, Adam M, Nguyen-Disteche M, Keck W, Van Beeumen J, Ayala J . Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. Biochem J. 1994; 298 ( Pt 1):189-95. PMC: 1138000. DOI: 10.1042/bj2980189. View

4.
Mukherjee A, Lutkenhaus J . Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol. 1994; 176(9):2754-8. PMC: 205420. DOI: 10.1128/jb.176.9.2754-2758.1994. View

5.
Frydman J, Nimmesgern E, Ohtsuka K, Hartl F . Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994; 370(6485):111-7. DOI: 10.1038/370111a0. View