» Articles » PMID: 8785270

Vortex Shedding As a Precursor of Turbulent Electrical Activity in Cardiac Muscle

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1996 Mar 1
PMID 8785270
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

In cardiac tissue, during partial blockade of the membrane sodium channels, or at high frequencies of excitation, inexcitable obstacles with sharp edges may destabilize the propagation of electrical excitation waves, causing the formation of self-sustained vortices and turbulent cardiac electrical activity. The formation of such vortices, which visually resembles vortex shedding in hydrodynamic turbulent flows, was observed in sheep epicardial tissue using voltage-sensitive dyes in combination with video-imaging techniques. Vortex shedding is a potential mechanism leading to the spontaneous initiation of uncontrolled high-frequency excitation of the heart.

Citing Articles

Mesoscale heterogeneity is a critical determinant for spiral pattern formation in developing social amoeba.

Kakizuka T, Nakaoka H, Hara Y, Ichiraku A, Arai Y, Itoga H Sci Rep. 2025; 15(1):1422.

PMID: 39789232 PMC: 11717926. DOI: 10.1038/s41598-025-85759-9.


Rotor mechanism and its mapping in atrial fibrillation.

Xu C, Xiong F, Jiang W, Liu X, Liu T, Qin M Europace. 2023; 25(3):783-792.

PMID: 36734272 PMC: 10062333. DOI: 10.1093/europace/euad002.


Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation.

Ramirez R, Takemoto Y, Martins R, Filgueiras-Rama D, Ennis S, Mironov S Circ Arrhythm Electrophysiol. 2019; 12(10):e005557.

PMID: 31594392 PMC: 6788778. DOI: 10.1161/CIRCEP.117.005557.


Influence of the distribution of fibrosis within an area of myocardial infarction on wave propagation in ventricular tissue.

Liang C, Wang K, Li Q, Bai J, Zhang H Sci Rep. 2019; 9(1):14151.

PMID: 31578428 PMC: 6775234. DOI: 10.1038/s41598-019-50478-5.


Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern.

Vandersickel N, Watanabe M, Tao Q, Fostier J, Zeppenfeld K, Panfilov A PLoS Comput Biol. 2018; 14(12):e1006637.

PMID: 30571689 PMC: 6319787. DOI: 10.1371/journal.pcbi.1006637.


References
1.
Panfilov A, Keener J . Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle. J Theor Biol. 1993; 163(4):439-48. DOI: 10.1006/jtbi.1993.1129. View

2.
Pertsov A, Panfilov A, Medvedeva F . [Instabilities of autowaves in excitable media associated with critical curvature phenomena]. Biofizika. 1983; 28(1):100-2. View

3.
Graham M, Kevrekidis I, Asakura K, Lauterbach J, Krischer K, Rotermund H . Effects of Boundaries on Pattern Formation: Catalytic Oxidation of CO on Platinum. Science. 1994; 264(5155):80-2. DOI: 10.1126/science.264.5155.80. View

4.
Keener J . An eikonal-curvature equation for action potential propagation in myocardium. J Math Biol. 1991; 29(7):629-51. DOI: 10.1007/BF00163916. View

5.
Cohen C, Bean B, Tsien R . Maximal upstroke velocity as an index of available sodium conductance. Comparison of maximal upstroke velocity and voltage clamp measurements of sodium current in rabbit Purkinje fibers. Circ Res. 1984; 54(6):636-51. DOI: 10.1161/01.res.54.6.636. View