» Articles » PMID: 8770231

Infrared Reflection-absorption of Melittin Interaction with Phospholipid Monolayers at the Air/water Interface

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1996 Jan 1
PMID 8770231
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The interaction of melittin with monolayers of 1,2-dipalmitoylphosphatidylcholine and 1,2-dipalmitoylphosphatidylserine has been investigated with infrared external reflection-absorption spectroscopy. Improved instrumentation permits determination of acyl chain conformation and peptide secondary structure in situ at the air/water interface. The IR frequency of the 1,2-dipalmitoylphosphatidylcholine antisymmetric acyl chain CH2 stretching vibration decreases by 1.3 cm-1 upon melittin insertion, consistent with acyl chain ordering, whereas the same vibrational mode increases by 0.5 cm-1 upon peptide interaction with the 1,2-dipalmitoylphosphatidylserine monolayer, indicative of chain disordering. Thus the peptide interacts quite differently with zwitterionic compared with negatively charged monolayer surfaces. Melittin in the monolayer adopted a secondary structure with an amide l(l') frequency (1635 cm-1) dramatically different from the alpha-helical motif (amide l frequency 1656 cm-1 in a dry or H2O hydrated environment, amide l' frequency 1645 cm-1 in an H-->D exchanged alpha-helix) assumed in bilayer or multibilayer environments. This work represents the first direct in situ spectroscopic indication that peptide secondary structure in lipid monolayers may differ from that in bilayers.

Citing Articles

How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration.

Stephani J, Gerhards L, Khairalla B, Solovyov I, Brand I ACS Infect Dis. 2024; 10(2):763-778.

PMID: 38259029 PMC: 10862549. DOI: 10.1021/acsinfecdis.3c00673.


Immunology of Bee Venom.

Elieh Ali Komi D, Shafaghat F, Zwiener R Clin Rev Allergy Immunol. 2017; 54(3):386-396.

PMID: 28105558 DOI: 10.1007/s12016-017-8597-4.


Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins.

Lhor M, Bernier S, Horchani H, Bussieres S, Cantin L, Desbat B Adv Colloid Interface Sci. 2014; 207:223-39.

PMID: 24560216 PMC: 4028306. DOI: 10.1016/j.cis.2014.01.015.


Molecular basis for membrane pore formation by Bax protein carboxyl terminus.

Tatulian S, Garg P, Nemec K, Chen B, Khaled A Biochemistry. 2012; 51(46):9406-19.

PMID: 23110300 PMC: 4537061. DOI: 10.1021/bi301195f.


Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin.

Anglin T, Brown K, Conboy J J Struct Biol. 2009; 168(1):37-52.

PMID: 19508895 PMC: 2892871. DOI: 10.1016/j.jsb.2009.06.001.


References
1.
LaFleur M, Faucon J, Dufourcq J, Pezolet M . Perturbation of binary phospholipid mixtures by melittin: a fluorescence and raman spectroscopy study. Biochim Biophys Acta. 1989; 980(1):85-92. DOI: 10.1016/0005-2736(89)90203-4. View

2.
Batenburg A, Hibbeln J, de Kruijff B . Lipid specific penetration of melittin into phospholipid model membranes. Biochim Biophys Acta. 1987; 903(1):155-65. DOI: 10.1016/0005-2736(87)90165-9. View

3.
Dluhy R, Mendelsohn R, Casal H, Mantsch H . Interaction of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine-d54 mixtures with glycophorin. A fourier transform infrared investigation. Biochemistry. 1983; 22(5):1170-7. DOI: 10.1021/bi00274a028. View

4.
Sui S, Wu H, Guo Y, Chen K . Conformational changes of melittin upon insertion into phospholipid monolayer and vesicle. J Biochem. 1994; 116(3):482-7. DOI: 10.1093/oxfordjournals.jbchem.a124550. View

5.
Vogel H, Jahnig F, Hoffmann V, Stumpel J . The orientation of melittin in lipid membranes. A polarized infrared spectroscopy study. Biochim Biophys Acta. 1983; 733(2):201-9. DOI: 10.1016/0005-2736(83)90523-0. View