» Articles » PMID: 8770192

A Semi-microscopic Monte Carlo Study of Permeation Energetics in a Gramicidin-like Channel: the Origin of Cation Selectivity

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1996 Jan 1
PMID 8770192
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The influence of a gramicidin-like channel former on ion free energy barriers is studied using Monte Carlo simulation. The model explicitly describes the ion, the water dipoles, and the peptide carbonyls; the remaining degrees of freedom, bulk electrolyte, non-polar lipid and peptide regions, and electronic (high frequency) permittivity, are treated in continuum terms. Contributions of the channel waters and peptide COs are studied both separately and collectively. We found that if constrained to their original orientations, the COs substantially increase the cationic permeation free energy; with or without water present, CO reorientation is crucial for ion-CO interaction to lower cation free energy barriers; the translocation free energy profiles for potassium-, rubidium-, and cesium-like cations exhibit no broad barriers; the lipid-bound peptide interacts more effectively with anions than cations; anionic translocation free energy profiles exhibit well defined maxima. Using experimental data to estimate transfer free energies of ions and water from bulk electrolyte to a non-polar dielectric (continuum lipid), we found reasonable ion permeation profiles; cations bind and permeate, whereas anions cannot enter the channel. Cation selectivity arises because, for ions of the same size and charge, anions bind hydration water more strongly.

Citing Articles

Ion selectivity of alpha-hemolysin with a beta-cyclodextrin adapter. I. Single ion potential of mean force and diffusion coefficient.

Luo Y, Egwolf B, Walters D, Roux B J Phys Chem B. 2010; 114(2):952-8.

PMID: 20041673 PMC: 2847479. DOI: 10.1021/jp906790f.


Through the channel and around the channel: Validating and comparing microscopic approaches for the evaluation of free energy profiles for ion penetration through ion channels.

Kato M, Warshel A J Phys Chem B. 2006; 109(41):19516-22.

PMID: 16853521 PMC: 2531223. DOI: 10.1021/jp053208l.


Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.

Bastug T, Kuyucak S Biophys J. 2006; 90(11):3941-50.

PMID: 16533834 PMC: 1459526. DOI: 10.1529/biophysj.105.074633.


Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study.

Miloshevsky G, Jordan P Biophys J. 2004; 87(6):3690-702.

PMID: 15377535 PMC: 1304883. DOI: 10.1529/biophysj.104.043315.


Ionic permeation free energy in gramicidin: a semimicroscopic perspective.

Dorman V, Jordan P Biophys J. 2004; 86(6):3529-41.

PMID: 15189852 PMC: 1304257. DOI: 10.1529/biophysj.103.039214.


References
1.
Andersen O, Koeppe 2nd R . Molecular determinants of channel function. Physiol Rev. 1992; 72(4 Suppl):S89-158. DOI: 10.1152/physrev.1992.72.suppl_4.S89. View

2.
Sancho M, Partenskii M, Dorman V, Jordan P . Extended dipolar chain model for ion channels: electrostriction effects and the translocational energy barrier. Biophys J. 1995; 68(2):427-33. PMC: 1281707. DOI: 10.1016/S0006-3495(95)80204-3. View

3.
Kienker P, Lear J . Charge selectivity of the designed uncharged peptide ion channel Ac-(LSSLLSL)3-CONH2. Biophys J. 1995; 68(4):1347-58. PMC: 1282029. DOI: 10.1016/S0006-3495(95)80307-3. View

4.
Collins K . Sticky ions in biological systems. Proc Natl Acad Sci U S A. 1995; 92(12):5553-7. PMC: 41734. DOI: 10.1073/pnas.92.12.5553. View

5.
Ketchem R, Hu W, Cross T . High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993; 261(5127):1457-60. DOI: 10.1126/science.7690158. View