» Articles » PMID: 8676881

Selectable Marker Recycling in the Chloroplast

Overview
Journal Mol Gen Genet
Date 1996 Jun 12
PMID 8676881
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterial gene aadA is an important and widely used selectable marker for manipulation of the chloroplast genome through biolistic transformation. Because no other such marker is available, two strategies for recycling of the aadA cassette have been developed. One utilizes homologous recombination between two direct repeats flanking the aadA cassette to allow its loss under non-selective growth conditions. A second strategy is to perform co-transformation with a plasmid containing a modified, non-essential chloroplast gene and another plasmid in which the aadA cassette disrupts a chloroplast gene known to be essential for survival. Under selective growth conditions the first mutation can be transferred to all chloroplast DNA copies whereas the aadA insertion remains heteroplasmic. Loss of the selectable marker can be achieved subsequently by growing the cells on non-selective media. In both cases it is possible to reuse the aadA cassette for the stepwise disruption or mutagenesis of any gene in the same strain.

Citing Articles

Overcoming Poor Transgene Expression in the Wild-Type Chloroplast: Creation of Highly Mosquitocidal Strains of .

Odom O, Kang S, Ferguson C, Chen C, Herrin D Microorganisms. 2022; 10(6).

PMID: 35744605 PMC: 9229432. DOI: 10.3390/microorganisms10061087.


Harnessing the Algal Chloroplast for Heterologous Protein Production.

Cutolo E, Mandala G, DallOsto L, Bassi R Microorganisms. 2022; 10(4).

PMID: 35456794 PMC: 9025058. DOI: 10.3390/microorganisms10040743.


Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production.

Monreal-Escalante E, Ramos-Vega A, Angulo C, Banuelos-Hernandez B Vaccines (Basel). 2022; 10(1).

PMID: 35062761 PMC: 8782010. DOI: 10.3390/vaccines10010100.


Marker-Free Transplastomic Plants by Excision of Plastid Marker Genes Using Directly Repeated DNA Sequences.

Mudd E, Madesis P, Avila E, Day A Methods Mol Biol. 2021; 2317:95-107.

PMID: 34028764 DOI: 10.1007/978-1-0716-1472-3_4.


The state of oligomerization of Rubisco controls the rate of synthesis of the Rubisco large subunit in Chlamydomonas reinhardtii.

Wietrzynski W, Traverso E, Wollman F, Wostrikoff K Plant Cell. 2021; 33(5):1706-1727.

PMID: 33625514 PMC: 8254502. DOI: 10.1093/plcell/koab061.


References
1.
Newman S, Gillham N, Harris E, Johnson A, Boynton J . Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol Gen Genet. 1991; 230(1-2):65-74. DOI: 10.1007/BF00290652. View

2.
Blowers A, Bogorad L, Shark K, Sanford J . Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell. 1989; 1(1):123-32. PMC: 159743. DOI: 10.1105/tpc.1.1.123. View

3.
Rodday S, Webber A, Bingham S, Biggins J . Evidence that the FX domain in photosystem I interacts with the subunit PsaC: site-directed changes in PsaB destabilize the subunit interaction in Chlamydomonas reinhardtii. Biochemistry. 1995; 34(19):6328-34. DOI: 10.1021/bi00019a010. View

4.
Finer J, Vain P, Jones M, McMullen M . Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 2013; 11(7):323-8. DOI: 10.1007/BF00233358. View

5.
Rochaix J . Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardii. J Mol Biol. 1978; 126(4):597-617. DOI: 10.1016/0022-2836(78)90011-6. View