» Articles » PMID: 8657580

The Histone 3'-terminal Stem-loop is Necessary for Translation in Chinese Hamster Ovary Cells

Overview
Specialty Biochemistry
Date 1996 May 15
PMID 8657580
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The metazoan cell cycle-regulated histone mRNAs are the only known cellular mRNAs that do not terminate in a poly(A) tall. Instead, mammalian histone mRNAs terminate in a highly conserved stem-loop structure which is required for 3'-end processing and regulates mRNA stability. The poly(A) tail not only regulates translational efficiency and mRNA stability but is required for the function of the cap in translation (m(7)GpppN). We show that the histone terminal stem-loop is functionally similar to a poly(A) tail in that it enhances translational efficiency and is co-dependent on a cap in order to establish an efficient level of translation. The histone stem-loop is sufficient and necessary to increase the translation of reporter mRNA in transfected Chinese hamster ovary cells but must be positioned at the 3'-terminus in order to function optimally. Mutations within the conserved stem or loop regions reduced its ability to facilitate translation. All histone mRNAs in higher plants are polyadenylated. The histone stem-loop did not function to influence translational efficiency or mRNA stability in plant protoplasts. These data demonstrate that the histone stem/loop directs efficient translation and that it is functionally analogous to a poly(A) tail.

Citing Articles

Cancer cell histone density links global histone acetylation, mitochondrial proteome and histone acetylase inhibitor sensitivity.

Bruhn C, Bastianello G, Foiani M Commun Biol. 2022; 5(1):882.

PMID: 36030322 PMC: 9420116. DOI: 10.1038/s42003-022-03846-3.


Gemin5-dependent RNA association with polysomes enables selective translation of ribosomal and histone mRNAs.

Embarc-Buh A, Francisco-Velilla R, Garcia-Martin J, Abellan S, Ramajo J, Martinez-Salas E Cell Mol Life Sci. 2022; 79(9):490.

PMID: 35987821 PMC: 9392717. DOI: 10.1007/s00018-022-04519-4.


A chromosome-level genome assembly of the pollinating fig wasp Valisia javana.

Chen L, Feng C, Wang R, Nong X, Deng X, Chen X DNA Res. 2022; 29(3).

PMID: 35595238 PMC: 9160881. DOI: 10.1093/dnares/dsac014.


Identification and characterization of histones in evidence a phylogenetic vicinity of Mycetozoans to the animal kingdom.

Poulet A, Mishra L, Teletchea S, Hayes J, Jacob Y, Thiriet C NAR Genom Bioinform. 2021; 3(4):lqab107.

PMID: 34805990 PMC: 8600027. DOI: 10.1093/nargab/lqab107.


Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers.

Challa S, Khulpateea B, Nandu T, Camacho C, Ryu K, Chen H Cell. 2021; 184(17):4531-4546.e26.

PMID: 34314702 PMC: 8380725. DOI: 10.1016/j.cell.2021.07.005.


References
1.
Hentschel C, Birnstiel M . The organization and expression of histone gene families. Cell. 1981; 25(2):301-13. DOI: 10.1016/0092-8674(81)90048-9. View

2.
Leathers V, TANGUAY R, Kobayashi M, Gallie D . A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993; 13(9):5331-47. PMC: 360232. DOI: 10.1128/mcb.13.9.5331-5347.1993. View

3.
Heintz N, Sive H, Roeder R . Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol Cell Biol. 1983; 3(4):539-50. PMC: 368569. DOI: 10.1128/mcb.3.4.539-550.1983. View

4.
Graves R, Marzluff W . Rapid reversible changes in the rate of histone gene transcription and histone mRNA levels in mouse myeloma cells. Mol Cell Biol. 1984; 4(2):351-7. PMC: 368702. DOI: 10.1128/mcb.4.2.351-357.1984. View

5.
Melton D, Krieg P, Rebagliati M, Maniatis T, Zinn K, Green M . Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984; 12(18):7035-56. PMC: 320141. DOI: 10.1093/nar/12.18.7035. View