» Articles » PMID: 8651642

Localization of HIV-1 in Human Brain Using Polymerase Chain Reaction/in Situ Hybridization and Immunocytochemistry

Overview
Journal Ann Neurol
Specialty Neurology
Date 1996 Jun 1
PMID 8651642
Citations 160
Authors
Affiliations
Soon will be listed here.
Abstract

Human immunodeficiency virus type 1 (HIV-1) infects the brains of a majority of patients with the acquired immunodeficiency syndrome (AIDS), and has been linked to the development of a progressive dementia termed "HIV-associated dementia." This disorder results in severe cognitive, behavioral, and motor deficits. Despite this neurological dysfunction, HIV-1 infection of brain cells does not occur significantly in neurons, astrocytes, or oligodendrocytes, but is restricted to brain macrophages and microglia. To identify possible low-level or latent infection of other brain cells, we combined the techniques of the polymerase chain reaction with in situ hybridization for the detection of HIV DNA, and used immunocytochemistry to identify the HIV-expressing cells. In the 21 adult brains studied (15 AIDS and 6 seronegative control brains), we found that polymerase chain reaction/in situ hybridization was both sensitive and specific for identifying HIV-infected cells. In all brains, the majority of infected cells were macrophages and microglia. In several brains, however, a substantial minority of cells harboring HIV DNA were identified as astrocytes. Neurons, oligodendrocytes, and endothelial cells were not infected with HIV, even in cases with HIV-associated dementia. These findings confirm previous data regarding the importance of macrophage/microglial infection, and essentially exclude neuronal infection in pathogenetic models of HIV-associated neurological disease. These data also demonstrate that latent or low-level infection of astrocytes occurs in AIDS, a finding that may be of importance in understanding HIV neuropathogenesis.

Citing Articles

Autophagy Deregulation in HIV-1-Infected Cells Increases Extracellular Vesicle Release and Contributes to TLR3 Activation.

DeMarino C, Cowen M, Williams A, Khatkar P, Abulwerdi F, Henderson L Viruses. 2024; 16(4).

PMID: 38675983 PMC: 11054313. DOI: 10.3390/v16040643.


Humanized Mice for Studies of HIV-1 Persistence and Elimination.

Zhang C, Zaman L, Poluektova L, Gorantla S, Gendelman H, Dash P Pathogens. 2023; 12(7).

PMID: 37513726 PMC: 10383313. DOI: 10.3390/pathogens12070879.


Intranasal delivery of darunavir improves brain drug concentrations in mice for effective HIV treatment.

Kumar A, Zhou L, Godse S, Sinha N, Ma D, Parmar K Biochem Biophys Rep. 2022; 33:101408.

PMID: 36532875 PMC: 9747527. DOI: 10.1016/j.bbrep.2022.101408.


Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage.

Branscome H, Khatkar P, Al Sharif S, Yin D, Jacob S, Cowen M Sci Rep. 2022; 12(1):2019.

PMID: 35132117 PMC: 8821538. DOI: 10.1038/s41598-022-05848-x.


Absence of LEDGF/p75 Expression in Astrocytes May Affect HIV-1 Integration Efficiency.

Yoder K Mol Gen Microbiol Virol. 2021; 34(2):81-83.

PMID: 33867663 PMC: 8048150. DOI: 10.3103/s0891416819020113.