» Articles » PMID: 8643580

Insights into Antibody Catalysis: Structure of an Oxygenation Catalyst at 1.9-angstrom Resolution

Overview
Specialty Science
Date 1996 May 28
PMID 8643580
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The x-ray crystal structures of the sulfide oxidase antibody 28B4 and of antibody 28B4 complexed with hapten have been solved at 2.2-angstrom and 1.9-angstrom resolution, respectively. To our knowledge, these structures are the highest resolution catalytic antibody structures to date and provide insight into the molecular mechanism of this antibody-catalyzed monooxygenation reaction. Specifically, the data suggest that entropic restriction plays a fundamental role in catalysis through the precise alignment of the thioether substrate and oxidant. The antibody active site also stabilizes developing charge on both sulfur and periodate in the transition state via cation-pi and electrostatic interactions, respectively. In addition to demonstrating that the active site of antibody 28B4 does indeed reflect the mechanistic information programmed in the aminophosphonic acid hapten, these high-resolution structures provide a basis for enhancing turnover rates through mutagenesis and improved hapten design.

Citing Articles

Local and Global Rigidification Upon Antibody Affinity Maturation.

Fernandez-Quintero M, Loeffler J, Bacher L, Waibl F, Seidler C, Liedl K Front Mol Biosci. 2020; 7:182.

PMID: 32850970 PMC: 7426445. DOI: 10.3389/fmolb.2020.00182.


Crystal structure of two anti-porphyrin antibodies with peroxidase activity.

Robles V, Marechal J, Bahloul A, Sari M, Mahy J, Golinelli-Pimpaneau B PLoS One. 2012; 7(12):e51128.

PMID: 23240001 PMC: 3519839. DOI: 10.1371/journal.pone.0051128.


A structural basis for the activity of retro-Diels-Alder catalytic antibodies: evidence for a catalytic aromatic residue.

Hugot M, Bensel N, Vogel M, Reymond M, Stadler B, Reymond J Proc Natl Acad Sci U S A. 2002; 99(15):9674-8.

PMID: 12093912 PMC: 124973. DOI: 10.1073/pnas.142286599.


Structural evidence for a programmed general base in the active site of a catalytic antibody.

Golinelli-Pimpaneau B, Goncalves O, Dintinger T, Blanchard D, Knossow M, Tellier C Proc Natl Acad Sci U S A. 2000; 97(18):9892-5.

PMID: 10963661 PMC: 27617. DOI: 10.1073/pnas.97.18.9892.


Cyclic peptide formation catalyzed by an antibody ligase.

Smithrud D, Benkovic P, Benkovic S, Roberts V, Liu J, Neagu I Proc Natl Acad Sci U S A. 2000; 97(5):1953-8.

PMID: 10688882 PMC: 15735. DOI: 10.1073/pnas.040534397.

References
1.
Page M, Jencks W . Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971; 68(8):1678-83. PMC: 389269. DOI: 10.1073/pnas.68.8.1678. View

2.
Patten P, Gray N, Yang P, Marks C, Wedemayer G, Boniface J . The immunological evolution of catalysis. Science. 1996; 271(5252):1086-91. DOI: 10.1126/science.271.5252.1086. View

3.
Crews S, Griffin J, Huang H, Calame K, Hood L . A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981; 25(1):59-66. DOI: 10.1016/0092-8674(81)90231-2. View

4.
Burley S, Petsko G . Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985; 229(4708):23-8. DOI: 10.1126/science.3892686. View

5.
Amit A, Mariuzza R, Phillips S, POLJAK R . Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986; 233(4765):747-53. DOI: 10.1126/science.2426778. View