Wang C, Liu D, Han H, Chai S, Li S, Wu Y
Planta. 2025; 261(4):70.
PMID: 40014161
DOI: 10.1007/s00425-025-04640-1.
Chen X, Su Z, Zheng Y, Li C, Ma J, Ma J
Theor Appl Genet. 2025; 138(1):32.
PMID: 39843841
PMC: 11754356.
DOI: 10.1007/s00122-025-04817-y.
Jang Y, Kim S, Baek J, Lee H, Lee C, Choi I
Plants (Basel). 2024; 13(23).
PMID: 39683080
PMC: 11644284.
DOI: 10.3390/plants13233288.
Han K, Wang Z, Shen L, Du X, Lian S, Li Y
Front Plant Sci. 2024; 15:1418328.
PMID: 39114469
PMC: 11303304.
DOI: 10.3389/fpls.2024.1418328.
Xu X, Su Y, Yang J, Li J, Gao Y, Li C
Theor Appl Genet. 2024; 137(2):49.
PMID: 38349579
DOI: 10.1007/s00122-024-04557-5.
Identification of QTLs associated with very-long chain fatty acid (VLCFA) content via linkage mapping and BSA-seq in peanut.
Xue X, Li J, Wu J, Hu M, Liu N, Yan L
Theor Appl Genet. 2024; 137(2):33.
PMID: 38285195
DOI: 10.1007/s00122-024-04547-7.
Natural variation and genetic loci underlying resistance to grain shattering in standing crop of modern wheat.
Emebiri L, Hildebrand S
Mol Genet Genomics. 2023; 298(5):1211-1224.
PMID: 37410105
PMC: 10363068.
DOI: 10.1007/s00438-023-02051-z.
Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat.
Gao J, Hu X, Gao C, Chen G, Feng H, Jia Z
Plant Biotechnol J. 2023; 21(10):1966-1977.
PMID: 37392004
PMC: 10502759.
DOI: 10.1111/pbi.14104.
Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS.
Guo Y, Wang G, Guo X, Chi S, Yu H, Jin K
Front Plant Sci. 2023; 14:1189887.
PMID: 37377808
PMC: 10291175.
DOI: 10.3389/fpls.2023.1189887.
Genetic mapping of some key plant architecture traits in Brassica juncea using a doubled haploid population derived from a cross between two distinct lines: vegetable type Tumida and oleiferous Varuna.
Mathur S, Singh P, Yadava S, Gupta V, Pradhan A, Pental D
Theor Appl Genet. 2023; 136(4):96.
PMID: 37017803
DOI: 10.1007/s00122-023-04321-1.
Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size.
Wang S, Wang T, Xuan Q, Qu X, Xu Q, Jiang Q
Theor Appl Genet. 2023; 136(4):90.
PMID: 37000252
DOI: 10.1007/s00122-023-04346-6.
Identification and validation of plant height, spike length and spike compactness loci in common wheat (Triticum aestivum L.).
Liu H, Shi Z, Ma F, Xu Y, Han G, Zhang J
BMC Plant Biol. 2022; 22(1):568.
PMID: 36471256
PMC: 9724413.
DOI: 10.1186/s12870-022-03968-0.
Dynamic Quantitative Trait Loci Mapping for Plant Height in Recombinant Inbred Line Population of Upland Cotton.
Wu J, Mao L, Tao J, Wang X, Zhang H, Xin M
Front Plant Sci. 2022; 13:914140.
PMID: 35769288
PMC: 9235862.
DOI: 10.3389/fpls.2022.914140.
Dynamic analysis of QTLs on plant height with single segment substitution lines in rice.
Fu Y, Zhao H, Huang J, Zhu H, Luan X, Bu S
Sci Rep. 2022; 12(1):5465.
PMID: 35361859
PMC: 8971505.
DOI: 10.1038/s41598-022-09536-8.
Four-Year and Five-Developing-Stage Dynamic QTL Mapping for Tiller Number in the Hybrid Population of Gaertn.
Che Y, He Y, Song N, Yang Y, Wei L, Yang X
Front Plant Sci. 2022; 13:835437.
PMID: 35283893
PMC: 8907830.
DOI: 10.3389/fpls.2022.835437.
Identification of One Major QTL and a Novel Gene Associated with Tiller Number in Rice Using QTL Analysis.
Zhao D, Park J, Jang Y, Kim E, Du X, Farooq M
Plants (Basel). 2022; 11(4).
PMID: 35214873
PMC: 8875189.
DOI: 10.3390/plants11040538.
Genetic Dissection of the Mixing Properties of Wheat Flour ( L.) Using Unconditional and Conditional QTL Mapping.
Yu H, An Y, Wang A, Guan X, Tian J, Ning T
J Genomics. 2022; 10:8-15.
PMID: 34976226
PMC: 8709693.
DOI: 10.7150/jgen.67253.
Construction of Three High-Density Genetic Linkage Maps and Dynamic QTL Mapping of Growth Traits in Yellow River Carp ().
Wang L, Jia S, Zhang Y, Jiang S, Chen Y, Chen J
Curr Issues Mol Biol. 2021; 43(3):2276-2288.
PMID: 34940134
PMC: 8928983.
DOI: 10.3390/cimb43030160.
Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress.
Satrio R, Fendiyanto M, Supena E, Suharsono S, Miftahudin M
Physiol Mol Biol Plants. 2021; 27(11):2635-2650.
PMID: 34924715
PMC: 8639969.
DOI: 10.1007/s12298-021-01095-y.
Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq.
Yang Y, Zhu X, Cui R, Wang R, Li H, Wang J
Planta. 2021; 254(6):110.
PMID: 34716824
DOI: 10.1007/s00425-021-03760-8.