» Articles » PMID: 8585995

Yeast and Mammalian Replication Intermediates Migrate Similarly in Two-dimensional Gels

Overview
Journal Chromosoma
Specialty Molecular Biology
Date 1995 Nov 1
PMID 8585995
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In the budding yeast, Saccharomyces cerevisiae, DNA replication initiates at specific, discrete chromosomal locations. At each initiation site, a single small replication bubble is generated, which subsequently expands at Y-like replication forks. We wanted to know whether other eukaryotic organisms utilize similar initiation mechanisms. For this purpose, replication intermediates (RIs) from three different organisms (Schizosaccharomyces pombe, Chinese hamster and human) were mixed individually with RIs from S. cerevisiae and then subjected to two-dimensional (2D) gel electrophoresis under conditions known to resolve molecules having different structures. All of the RIs detected by the hybridization probes we used for each organism migrated nearly identically to specific RIs of similar size from S. cerevisiae, implying that the detected RIs from all the studied organisms have very similar structures and may therefore employ the same basic initiation mechanism.

Citing Articles

A winding road to origin discovery.

Hamlin J, Mesner L, Dijkwel P Chromosome Res. 2009; 18(1):45-61.

PMID: 19859818 PMC: 2904547. DOI: 10.1007/s10577-009-9089-z.


Bi-directional replication and random termination.

Santamaria D, Viguera E, Martinez-Robles M, Hyrien O, Hernandez P, Krimer D Nucleic Acids Res. 2000; 28(10):2099-107.

PMID: 10773078 PMC: 105368. DOI: 10.1093/nar/28.10.2099.


Characterizing replication intermediates in the amplified CHO dihydrofolate reductase domain by two novel gel electrophoretic techniques.

Kalejta R, Lin H, Dijkwel P, Hamlin J Mol Cell Biol. 1996; 16(9):4923-31.

PMID: 8756651 PMC: 231494. DOI: 10.1128/MCB.16.9.4923.


Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage.

Kalejta R, Hamlin J Mol Cell Biol. 1996; 16(9):4915-22.

PMID: 8756650 PMC: 231493. DOI: 10.1128/MCB.16.9.4915.

References
1.
Maundrell K, Hutchison A, Shall S . Sequence analysis of ARS elements in fission yeast. EMBO J. 1988; 7(7):2203-9. PMC: 454554. DOI: 10.1002/j.1460-2075.1988.tb03059.x. View

2.
Struhl K, Stinchcomb D, Scherer S, Davis R . High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979; 76(3):1035-9. PMC: 383183. DOI: 10.1073/pnas.76.3.1035. View

3.
LITTLE R, Platt T, SCHILDKRAUT C . Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol. 1993; 13(10):6600-13. PMC: 364718. DOI: 10.1128/mcb.13.10.6600-6613.1993. View

4.
Liang C, Gerbi S . Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method. Mol Cell Biol. 1994; 14(2):1520-9. PMC: 358507. DOI: 10.1128/mcb.14.2.1520-1529.1994. View

5.
Micheli G, Baldari C, Carri M, Di Cello G, BUONGIORNO-NARDELLI M . An electron microscope study of chromosomal DNA replication in different eukaryotic systems. Exp Cell Res. 1982; 137(1):127-40. DOI: 10.1016/0014-4827(82)90015-5. View