» Articles » PMID: 8576654

An SIS Epidemic Model with Variable Population Size and a Delay

Overview
Journal J Math Biol
Date 1995 Jan 1
PMID 8576654
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The SIS epidemiological model has births, natural deaths, disease-related deaths and a delay corresponding to the infectious period. The thresholds for persistence, equilibria and stability are determined. The persistence of the disease combined with the disease-related deaths can cause the population size to decrease to zero, to remain finite, or to grow exponentially with a smaller growth rate constant. For some parameter values, the endemic infective-fraction equilibrium is asymptotically stable, but for other parameter values, it is unstable and a surrounding periodic solution appears by Hopf bifurcation.

Citing Articles

Temporally Local Maximum Likelihood with Application to SIS Model.

Gourieroux C, Jasiak J J Time Ser Econom. 2023; 15(2):151-198.

PMID: 38155754 PMC: 10752238. DOI: 10.1515/jtse-2022-0016.


A cyclic behavioral modeling aspect to understand the effects of vaccination and treatment on epidemic transmission dynamics.

Zobayer A, Sharif Ullah M, Ariful Kabir K Sci Rep. 2023; 13(1):8356.

PMID: 37221186 PMC: 10205038. DOI: 10.1038/s41598-023-35188-3.


Social distancing as a public-good dilemma for socio-economic cost: An evolutionary game approach.

Ovi M, Nabi K, Ariful Kabir K Heliyon. 2022; 8(11):e11497.

PMID: 36411893 PMC: 9674882. DOI: 10.1016/j.heliyon.2022.e11497.


Dynamics in a disease transmission model coupled virus infection in host with incubation delay and environmental effects.

Aili A, Teng Z, Zhang L J Appl Math Comput. 2022; 68(6):4331-4359.

PMID: 36311054 PMC: 9588872. DOI: 10.1007/s12190-022-01709-y.


On the economic growth equilibria during the Covid-19 pandemic.

Bischi G, Grassetti F, Sanchez Carrera E Commun Nonlinear Sci Numer Simul. 2022; 112:106573.

PMID: 35573466 PMC: 9091065. DOI: 10.1016/j.cnsns.2022.106573.


References
1.
Greenhalgh D . Some results for an SEIR epidemic model with density dependence in the death rate. IMA J Math Appl Med Biol. 1992; 9(2):67-106. DOI: 10.1093/imammb/9.2.67. View

2.
Bremermann H, Thieme H . A competitive exclusion principle for pathogen virulence. J Math Biol. 1989; 27(2):179-90. DOI: 10.1007/BF00276102. View

3.
Greenhalgh D . Vaccination in density-dependent epidemic models. Bull Math Biol. 1992; 54(5):733-58. DOI: 10.1007/BF02459928. View

4.
Busenberg S, van den Driessche P . Analysis of a disease transmission model in a population with varying size. J Math Biol. 1990; 28(3):257-70. DOI: 10.1007/BF00178776. View

5.
Lin X . Qualitative analysis of an HIV transmission model. Math Biosci. 1991; 104(1):111-34. DOI: 10.1016/0025-5564(91)90033-f. View