» Articles » PMID: 8524274

The Rad18 Gene of Schizosaccharomyces Pombe Defines a New Subgroup of the SMC Superfamily Involved in DNA Repair

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1995 Dec 1
PMID 8524274
Citations 101
Authors
Affiliations
Soon will be listed here.
Abstract

The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and gamma radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function--the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene.

Citing Articles

The SMC5/6 complex: folding chromosomes back into shape when genomes take a break.

Roy S, Adhikary H, DAmours D Nucleic Acids Res. 2024; 52(5):2112-2129.

PMID: 38375830 PMC: 10954462. DOI: 10.1093/nar/gkae103.


Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double-strand breaks in Arabidopsis.

Guo T, Liu M, Chen L, Liu Y, Li L, Li Y Nat Plants. 2023; 9(8):1280-1290.

PMID: 37488265 DOI: 10.1038/s41477-023-01461-6.


Genome control by SMC complexes.

Hoencamp C, Rowland B Nat Rev Mol Cell Biol. 2023; 24(9):633-650.

PMID: 37231112 DOI: 10.1038/s41580-023-00609-8.


The SAGA histone acetyltransferase module targets SMC5/6 to specific genes.

Mahrik L, Stefanovie B, Maresova A, Princova J, Kolesar P, Lelkes E Epigenetics Chromatin. 2023; 16(1):6.

PMID: 36793083 PMC: 9933293. DOI: 10.1186/s13072-023-00480-z.


Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging.

Tanasie N, Gutierrez-Escribano P, Jaklin S, Aragon L, Stigler J Cell Rep. 2022; 41(10):111778.

PMID: 36476856 PMC: 9756111. DOI: 10.1016/j.celrep.2022.111778.


References
1.
Walker J, Saraste M, Runswick M, Gay N . Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982; 1(8):945-51. PMC: 553140. DOI: 10.1002/j.1460-2075.1982.tb01276.x. View

2.
Robins P, Pappin D, Wood R, Lindahl T . Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. J Biol Chem. 1994; 269(46):28535-8. View

3.
Picksley S, Attfield P, Lloyd R . Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet. 1984; 195(1-2):267-74. DOI: 10.1007/BF00332758. View

4.
Labouesse M, Herbert C, Dujardin G, SLONIMSKI P . Three suppressor mutations which cure a mitochondrial RNA maturase deficiency occur at the same codon in the open reading frame of the nuclear NAM2 gene. EMBO J. 1987; 6(3):713-21. PMC: 553455. DOI: 10.1002/j.1460-2075.1987.tb04812.x. View

5.
Rostas K, Morton S, Picksley S, Lloyd R . Nucleotide sequence and LexA regulation of the Escherichia coli recN gene. Nucleic Acids Res. 1987; 15(13):5041-9. PMC: 305946. DOI: 10.1093/nar/15.13.5041. View