» Articles » PMID: 8515081

Construction of an HIV-1 Peptide Vaccine Containing a Multideterminant Helper Peptide Linked to a V3 Loop Peptide 18 Inducing Strong Neutralizing Antibody Responses in Mice of Multiple MHC Haplotypes After Two Immunizations

Overview
Journal J Immunol
Date 1993 Jun 15
PMID 8515081
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Peptide constructs comprised of multideterminant Th peptides from the envelope glycoprotein of HIV previously identified to induce proliferative responses in four different haplotypes of mice and IL-2 responses in 52 to 73% of HIV positive, Ag-responsive patients, were colinearly synthesized with the peptide 18 of the V3 loop of HIV-1 gp 160, corresponding to the principal neutralizing determinant of HIV-IIIB. The segments containing clusters of overlapping Th epitopes were called cluster peptides. Cognate help for peptide 18 antibody was elicited after a single immunization in all strains of mice that had previously responded to a T cell epitope encompassed by the cluster peptides. Animals boosted with cluster peptide-peptide 18 constructs 36 to 52 wk later displayed secondary antibody responses. Cluster peptide 3-peptide 18 induced antibody that neutralized homologous virus in one strain of mice although strong peptide 18 antibody responses were detected in all four strains of mice. The most promising construct, cluster peptide 6-peptide 18, induced neutralizing antibody in all strains of mice tested, and in two strains the level of neutralizing antibody achieved was comparable to levels adequate for protection from homologous viral challenge in chimpanzees. After a single boost, antibody titers for 90% neutralization in the range of 1/1000 to 1/16,000 were achieved. These neutralizing titers against the homologous viral strain, after just two immunizations, are at least four- to eightfold higher than the highest titered other polyclonal V3-specific immune sera we have ever observed in our laboratories. We also asked why some sera neutralized and others with similar ELISA titers did not. No correlation was found between neutralization and isotype or affinity for peptide or gp 120. We could not account for neutralization by antibodies to the helper sites. Substitutions made in the central loop region of peptide 18, amino acid residues PGRAF, dramatically reduced binding of both neutralizing and non-neutralizing sera although some fine specificity differences between neutralizing and nonneutralizing sera were noted. These results have implications for the design of synthetic peptide vaccines for HIV.

Citing Articles

Deficient synthesis of class-switched, HIV-neutralizing antibodies to the CD4 binding site and correction by electrophilic gp120 immunogen.

Planque S, Mitsuda Y, Chitsazzadeh V, Gorantla S, Poluektova L, Nishiyama Y AIDS. 2014; 28(15):2201-11.

PMID: 25022597 PMC: 4573643. DOI: 10.1097/QAD.0000000000000392.


A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the "Antigen Capsid-Incorporation" strategy.

Gu L, Krendelchtchikova V, Krendelchtchikov A, Oster R, Fujihashi K, Matthews Q Virol J. 2014; 11:112.

PMID: 24935650 PMC: 4065546. DOI: 10.1186/1743-422X-11-112.


Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population.

Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B J Immunol. 2010; 185(7):4189-98.

PMID: 20810981 PMC: 3307390. DOI: 10.4049/jimmunol.1001006.


Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity.

Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B J Immunol. 2010; 184(5):2492-503.

PMID: 20139279 PMC: 2935290. DOI: 10.4049/jimmunol.0903655.


Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines.

Zhu Q, Egelston C, Vivekanandhan A, Uematsu S, Akira S, Klinman D Proc Natl Acad Sci U S A. 2008; 105(42):16260-5.

PMID: 18845682 PMC: 2570973. DOI: 10.1073/pnas.0805325105.