» Articles » PMID: 8493857

Oculomotor Nuclear Pathology in Amyotrophic Lateral Sclerosis

Overview
Specialty Neurology
Date 1993 Jan 1
PMID 8493857
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

We examined the oculomotor and/or trochlear nuclei of 27 amyotrophic lateral sclerosis (ALS) patients and 10 controls by histological and immunohistological methods. Their neurons were relatively well preserved. In 7 of 22 sporadic ALS patients (including 3/3 ALS with ophthalmoplegia) and in 4 of 5 ALS patients with dementia, some morphological changes similar to those in anterior horns (Bunina bodies, ubiquitin-positive skein-like inclusions, Lewy body-like inclusions, conglomerate inclusions and spheroids) were rarely, but clearly seen. These changes were not observed in controls. Our results suggest that the oculomotor and trochlear nuclei in ALS patients are slightly affected in a manner similar to that in the anterior horns, but the degree is less than that necessary for development of ophthalmoplegia in the majority of ALS patients.

Citing Articles

Cellular and axonal transport phenotypes due to the C9ORF72 HRE in iPSC motor and sensory neurons.

Scaber J, Thomas-Wright I, Clark A, Xu Y, Vahsen B, Carcole M Stem Cell Reports. 2024; 19(7):957-972.

PMID: 38876108 PMC: 11252479. DOI: 10.1016/j.stemcr.2024.05.008.


Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases.

Kampmann M Nat Rev Neurosci. 2024; 25(5):351-371.

PMID: 38575768 DOI: 10.1038/s41583-024-00806-0.


Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons.

Fiore A, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D Cell Rep. 2024; 43(3):113885.

PMID: 38457337 PMC: 11018139. DOI: 10.1016/j.celrep.2024.113885.


Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates.

Ovsepian S, OLeary V, Martinez S Brain Struct Funct. 2023; 229(1):1-14.

PMID: 37999738 PMC: 10827929. DOI: 10.1007/s00429-023-02728-6.


The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis.

Schweingruber C, Hedlund E Biology (Basel). 2022; 11(8).

PMID: 36009818 PMC: 9405388. DOI: 10.3390/biology11081191.


References
1.
Mizutani T, AKI M, SHIOZAWA R, Unakami M, Nozawa T, Yajima K . Development of ophthalmoplegia in amyotrophic lateral sclerosis during long-term use of respirators. J Neurol Sci. 1990; 99(2-3):311-9. DOI: 10.1016/0022-510x(90)90165-j. View

2.
Tomonaga M . Selective appearance of Bunina bodies in amyotrophic lateral sclerosis. A study of the distribution in midbrain and sacral cord. J Neurol. 1980; 223(4):259-67. DOI: 10.1007/BF00313340. View

3.
Murayama S, Mori H, Ihara Y, Bouldin T, Suzuki K, Tomonaga M . Immunocytochemical and ultrastructural studies of lower motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 1990; 27(2):137-48. DOI: 10.1002/ana.410270208. View

4.
HARVEY D, TORACK R, ROSENBAUM H . Amyotrophic lateral sclerosis with ophthalmoplegia. A clinicopathologic study. Arch Neurol. 1979; 36(10):615-7. DOI: 10.1001/archneur.1979.00500460049005. View

5.
Yoshida M, Murakami N, Hashizume Y, Itoh E, Takahashi A . [A clinicopathological study of two respirator-aided long-survival cases of amyotrophic lateral sclerosis]. Rinsho Shinkeigaku. 1992; 32(3):259-65. View