» Articles » PMID: 8471727

Nucleation and Growth Phases in the Polymerization of Coat and Scaffolding Subunits into Icosahedral Procapsid Shells

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1993 Mar 1
PMID 8471727
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.

Citing Articles

From viral assembly to host interaction: AFM's contributions to virology.

Ray A, Simpson J, Demir I, Gisbert V, Gomes D, Amadei F J Virol. 2024; 99(1):e0087324.

PMID: 39655953 PMC: 11784315. DOI: 10.1128/jvi.00873-24.


Structural Basis for Alternative Self-Assembly Pathways Leading to Different Human Immunodeficiency Virus Capsid-Like Nanoparticles.

Escrig J, Marcos-Alcalde I, Dominguez-Zotes S, Abia D, Gomez-Puertas P, Valbuena A ACS Nano. 2024; 18(40):27465-27478.

PMID: 39329375 PMC: 11587947. DOI: 10.1021/acsnano.4c07948.


Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface.

Patterson A, Young K, Biever M, Klein S, Huang S, DePhillips P Virology. 2024; 600:110211.

PMID: 39276669 PMC: 11560593. DOI: 10.1016/j.virol.2024.110211.


Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate).

Asor R, Singaram S, Levi-Kalisman Y, Hagan M, Raviv U Eur Phys J E Soft Matter. 2023; 46(11):107.

PMID: 37917241 PMC: 11827716. DOI: 10.1140/epje/s10189-023-00363-x.


Molecular Dynamics Simulations of Deformable Viral Capsomers.

Nilsson L, Sun F, Kadupitiya J, Jadhao V Viruses. 2023; 15(8).

PMID: 37632014 PMC: 10459744. DOI: 10.3390/v15081672.


References
1.
Oosawa F, Kasai M . A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962; 4:10-21. DOI: 10.1016/s0022-2836(62)80112-0. View

2.
Steven A, Bauer A, Bisher M, Robey F, BLACK L . The maturation-dependent conformational change of phage T4 capsid involves the translocation of specific epitopes between the inner and the outer capsid surfaces. J Struct Biol. 1991; 106(3):221-36. DOI: 10.1016/1047-8477(91)90072-5. View

3.
Rueckert R, Dunker A, Stoltzfus C . The structure of mouse-Elberfeld virus: a model. Proc Natl Acad Sci U S A. 1969; 62(3):912-9. PMC: 223685. DOI: 10.1073/pnas.62.3.912. View

4.
Butler P, Klug A . Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat New Biol. 1971; 229(2):47-50. DOI: 10.1038/newbio229047a0. View

5.
ASAKURA S . A kinetic study of in vitro polymerization of flagellin. J Mol Biol. 1968; 35(1):237-9. DOI: 10.1016/s0022-2836(68)80051-8. View