» Articles » PMID: 8446581

A Small Single-"finger" Peptide from the Erythroid Transcription Factor GATA-1 Binds Specifically to DNA As a Zinc or Iron Complex

Overview
Specialty Science
Date 1993 Mar 1
PMID 8446581
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Sequence-specific DNA binding has been demonstrated for a synthetic peptide comprising only one of the two "finger"-like domains of the erythroid transcription factor GATA-1 (also termed Eryf-1, NF-E1, or GF-1). Quantitative analysis of gel-retardation assays yields a specific association constant of 1.2 x 10(8) M, compared with values of about 10(9) M for the full-length natural GATA-1 protein. By the use of peptides of various lengths, it was possible to delineate the smallest region necessary for specific binding. A single C-terminal finger of the double-finger motif is necessary but not sufficient for sequence-specific interaction. Basic amino acids located C-terminal to the finger (some more than 20 amino acids away) are also essential for tight binding. In addition to demonstrating that zinc is important for the formation of an active binding complex, we show that other ions, notably Fe2+, can fulfill this role. Our results make it clear that the GATA-1 metal binding motif is quite distinct from that found in the steroid hormone family and that GATA-1 is a member of a separate class of DNA binding proteins.

Citing Articles

Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program.

Katsumura K, Liu P, Kim J, Mehta C, Bresnick E Proc Natl Acad Sci U S A. 2024; 121(10):e2317147121.

PMID: 38422019 PMC: 10927522. DOI: 10.1073/pnas.2317147121.


Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks.

Jung M, Shen S, Botten G, Olender T, Katsumura K, Johnson K J Clin Invest. 2023; 133(7).

PMID: 36809258 PMC: 10065080. DOI: 10.1172/JCI162685.


The past, present, and future of artificial zinc finger proteins: design strategies and chemical and biological applications.

Negi S, Imanishi M, Hamori M, Kawahara-Nakagawa Y, Nomura W, Kishi K J Biol Inorg Chem. 2023; 28(3):249-261.

PMID: 36749405 PMC: 9903285. DOI: 10.1007/s00775-023-01991-6.


Neuroepigenetic Mechanisms of Action of Ultrashort Peptides in Alzheimer's Disease.

Ilina A, Khavinson V, Linkova N, Petukhov M Int J Mol Sci. 2022; 23(8).

PMID: 35457077 PMC: 9032300. DOI: 10.3390/ijms23084259.


Complex Interactions in Regulation of Haematopoiesis-An Unexplored Iron Mine.

De R, Prakash K, Edison E Genes (Basel). 2021; 12(8).

PMID: 34440444 PMC: 8391430. DOI: 10.3390/genes12081270.


References
1.
Watenpaugh K, Sieker L, Jensen L . The structure of rubredoxin at 1.2 A resolution. J Mol Biol. 1979; 131(3):509-22. DOI: 10.1016/0022-2836(79)90005-6. View

2.
Evans T, Reitman M, Felsenfeld G . An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A. 1988; 85(16):5976-80. PMC: 281888. DOI: 10.1073/pnas.85.16.5976. View

3.
Watenpaugh K, Sieker L, Jensen L . Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. J Mol Biol. 1980; 138(3):615-33. DOI: 10.1016/s0022-2836(80)80020-9. View

4.
Kadonaga J, Carner K, Masiarz F, Tjian R . Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987; 51(6):1079-90. DOI: 10.1016/0092-8674(87)90594-0. View

5.
Reitman M, Felsenfeld G . Mutational analysis of the chicken beta-globin enhancer reveals two positive-acting domains. Proc Natl Acad Sci U S A. 1988; 85(17):6267-71. PMC: 281950. DOI: 10.1073/pnas.85.17.6267. View