Studies of a Key Protein in the Mechanism of the Excitation-contraction Coupling Process of Frog Skeletal Muscle, Using Phenylglyoxal
Overview
Affiliations
The excitation-contraction (E-C) coupling process in single twitch fibres from frog toe muscle was inhibited selectively by phenylglyoxal (PGO), a specific guanidyl modifying reagent. A new protein (31.5 kDa), which has PGO-binding ability and seems to play a key role in the E-C coupling process, was solubilized from transverse tubule membrane-junctional sarcoplasmic reticulum complexes (TTM-JSR) of frog skeletal muscles, using 14C-PGO. The monoclonal antibody against this protein applied extracellularly inhibited the E-C coupling process of the single fibres. This protein appears to constitute the very first step of input for E-C coupling. It is considered to behave as an indispensable part of an 'electrometer' to measure membrane potentials. Therefore, the name 'electrometrin' is suggested for the new protein.