» Articles » PMID: 843169

Isolation and Characterization of Disc-shaped Phycobilisomes from the Red Alga Rhodella Violacea

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 1977 Feb 4
PMID 843169
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Disc-shaped phycobilisomes were purified from Triton X100 treated cell homogenates of the unicellular marine red alga, Rhodella violacea. Their absorption spectrum had principal maxima at 544 and 568 nm (B-phycoerythrin), 624 nm (C-phycocyanin) and a distinct shoulder at 652 nm (allophycocyanin). Intermolecular energy transfer within the phycobilisomes was clearly demonstrated by fluorescence data. Excited at 546 nm intact phycobilisomes showed a main fluorescence emission maximum at 665 nm, a minor one at 577 nm and a shoulder at 730 nm. Dissociated phycobilisomes revealed a composition of 58% B-phycoerythrin, 25% C-phycocyanin and 17% allophycocyanin under the cultural conditions used. Analytical methods resolved no other components than phycobiliproteins. In addition to the defined C-phycocyanin and two isoproteins of B-phycoerythrin a stable heterogeneous aggregate of B-phycoerythrin/C-phycocyanin was separated in considerable amounts. In the electron microscope negatively stained phycobilisomes appeared as elliptical aggregates having dimensions slightly above the values found in ultrathin sections and a detailed subunit structure. All observations and data suggest a new rhodophytan phycobilisome type in Rhodella violacea.

Citing Articles

The structural basis for light harvesting in organisms producing phycobiliproteins.

Bryant D, Gisriel C Plant Cell. 2024; 36(10):4036-4064.

PMID: 38652697 PMC: 11449063. DOI: 10.1093/plcell/koae126.


Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light.

Parys E, Krupnik T, Kulak I, Kania K, Romanowska E Photosynth Res. 2020; 147(1):61-73.

PMID: 33231791 PMC: 7728651. DOI: 10.1007/s11120-020-00796-x.


Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae.

Kana R, Kotabova E, Lukes M, Papacek S, Matonoha C, Liu L Plant Physiol. 2014; 165(4):1618-1631.

PMID: 24948833 PMC: 4119043. DOI: 10.1104/pp.114.236075.


Isolation and biliprotein characterization of phycobilisomes from the thermophilic cyanobacterium Mastigocladus laminosus Cohn.

Nies M, Wehrmeyer W Planta. 2013; 150(4):330-7.

PMID: 24306806 DOI: 10.1007/BF00384663.


The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview.

Su H, Xie B, Zhang X, Zhou B, Zhang Y Photosynth Res. 2010; 106(1-2):73-87.

PMID: 20521115 DOI: 10.1007/s11120-010-9560-x.


References
1.
Koller K, Wehrmeyer W . B-Phycoerythrin from Rhodella violacea: characterization of two isoproteins. Arch Microbiol. 1975; 104(3):255-61. DOI: 10.1007/BF00447334. View

2.
Gray B, Gantt E . Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga-nostoc sp. Photochem Photobiol. 1975; 21(2):121-8. DOI: 10.1111/j.1751-1097.1975.tb06638.x. View

3.
Evans E, Allen M . Phycobilisomes in Anacystis nidulans. J Bacteriol. 1973; 113(1):403-8. PMC: 251643. DOI: 10.1128/jb.113.1.403-408.1973. View

4.
Gantt E, Lipschultz C . Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol. 1972; 54(2):313-24. PMC: 2108884. DOI: 10.1083/jcb.54.2.313. View

5.
Gantt E, Conti S . Phycobiliprotein localization in algae. Brookhaven Symp Biol. 1966; 19:393-405. View