» Articles » PMID: 8389750

Coordination Dynamics of Heme-copper Oxidases. The Ligand Shuttle and the Control and Coupling of Electron Transfer and Proton Translocation

Overview
Publisher Springer
Date 1993 Apr 1
PMID 8389750
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Results are presented which, taken with evidence developed by others, suggest a general mechanism for the entry and binding of exogenous ligands (including O2) at the "binuclear site" (CuBFea3) of the heme-copper oxidases. The mechanism includes a "ligand shuttle" wherein the obligatory way station for incoming ligands is CuB and the binding of exogenous ligands at this site triggers the exchange and displacement of endogenous ligands at Fea3. It is suggested that these ligand shuttle reactions might be functionally important in providing a coupling mechanism for electron transfer and proton translocation. Scenarios as to how this might happen are delineated.

Citing Articles

Detection of a Geminate Photoproduct of Bovine Cytochrome Oxidase by Time-Resolved Serial Femtosecond Crystallography.

Ishigami I, Carbajo S, Zatsepin N, Hikita M, Conrad C, Nelson G J Am Chem Soc. 2023; 145(41):22305-22309.

PMID: 37695261 PMC: 10814876. DOI: 10.1021/jacs.3c07803.


Detection of a geminate photoproduct of bovine cytochrome c oxidase by time-resolved serial femtosecond crystallography.

Ishigami I, Carbajo S, Zatsepin N, Hikita M, Conrad C, Nelson G bioRxiv. 2023; .

PMID: 37214971 PMC: 10197551. DOI: 10.1101/2023.05.08.539888.


Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function.

Adam S, Wijeratne G, Rogler P, Diaz D, Quist D, Liu J Chem Rev. 2018; 118(22):10840-11022.

PMID: 30372042 PMC: 6360144. DOI: 10.1021/acs.chemrev.8b00074.


Isolation of yeast complex IV in native lipid nanodiscs.

Smirnova I, Sjostrand D, Li F, Bjorck M, Schafer J, Ostbye H Biochim Biophys Acta. 2016; 1858(12):2984-2992.

PMID: 27620332 PMC: 9472556. DOI: 10.1016/j.bbamem.2016.09.004.


Oxygen as Acceptor.

Borisov V, Verkhovsky M EcoSal Plus. 2016; 6(2).

PMID: 26734697 PMC: 11575855. DOI: 10.1128/ecosalplus.ESP-0012-2015.


References
1.
Varotsis C, Woodruff W, Babcock G . Direct detection of a dioxygen adduct of cytochrome a3 in the mixed valence cytochrome oxidase/dioxygen reaction. J Biol Chem. 1990; 265(19):11131-6. View

2.
Woodruff W, Einarsdottir O, Dyer R, Bagley K, Palmer G, Atherton S . Nature and functional implications of the cytochrome a3 transients after photodissociation of CO-cytochrome oxidase. Proc Natl Acad Sci U S A. 1991; 88(6):2588-92. PMC: 51278. DOI: 10.1073/pnas.88.6.2588. View

3.
Varotsis C, Zhang Y, Appelman E, Babcock G . Resolution of the reaction sequence during the reduction of O2 by cytochrome oxidase. Proc Natl Acad Sci U S A. 1993; 90(1):237-41. PMC: 45635. DOI: 10.1073/pnas.90.1.237. View

4.
Hill B, Greenwood C, Nicholls P . Intermediate steps in the reaction of cytochrome oxidase with molecular oxygen. Biochim Biophys Acta. 1986; 853(2):91-113. DOI: 10.1016/0304-4173(86)90006-6. View

5.
Einarsdottir O, Choc M, Weldon S, Caughey W . The site and mechanism of dioxygen reduction in bovine heart cytochrome c oxidase. J Biol Chem. 1988; 263(27):13641-54. View