Barez-Lopez S, Mecawi A, Bryan N, Pauza A, Duque V, Gillard B
Mol Cell Proteomics. 2023; 22(5):100544.
PMID: 37030596
PMC: 10205546.
DOI: 10.1016/j.mcpro.2023.100544.
Prager-Khoutorsky M, Choe K, Levi D, Bourque C
Curr Hypertens Rep. 2017; 19(5):42.
PMID: 28451854
DOI: 10.1007/s11906-017-0741-2.
McMahon S, Chang C, Jackson M
J Gen Physiol. 2016; 147(3):243-54.
PMID: 26880753
PMC: 4772375.
DOI: 10.1085/jgp.201511525.
McMahon S, Jackson M
Cell Calcium. 2014; 56(6):504-12.
PMID: 25465896
PMC: 4314461.
DOI: 10.1016/j.ceca.2014.10.010.
Wang D, Bansal V, Fisher T
Channels (Austin). 2014; 8(3):216-21.
PMID: 24755552
PMC: 4203750.
DOI: 10.4161/chan.28863.
Neurotransmitters and peptides: whispered secrets and public announcements.
Leng G, Ludwig M
J Physiol. 2008; 586(23):5625-32.
PMID: 18845614
PMC: 2655398.
DOI: 10.1113/jphysiol.2008.159103.
Emergent synchronous bursting of oxytocin neuronal network.
Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, Moos F
PLoS Comput Biol. 2008; 4(7):e1000123.
PMID: 18636098
PMC: 2440533.
DOI: 10.1371/journal.pcbi.1000123.
A mechanical spike accompanies the action potential in Mammalian nerve terminals.
Kim G, Kosterin P, Obaid A, Salzberg B
Biophys J. 2007; 92(9):3122-9.
PMID: 17307820
PMC: 1852366.
DOI: 10.1529/biophysj.106.103754.
Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production.
Kosterin P, Kim G, Muschol M, Obaid A, Salzberg B
J Membr Biol. 2006; 208(2):113-24.
PMID: 16645741
DOI: 10.1007/s00232-005-0824-x.
Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".
Muschol M, Kosterin P, Ichikawa M, Salzberg B
J Neurosci. 2003; 23(36):11352-62.
PMID: 14672999
PMC: 6740515.
Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion.
Muschol M, Salzberg B
J Neurosci. 2000; 20(18):6773-80.
PMID: 10995820
PMC: 6772822.
Energetics of functional activation in neural tissues.
Sokoloff L
Neurochem Res. 1999; 24(2):321-9.
PMID: 9972882
DOI: 10.1023/a:1022534709672.
Extrinsic modulation of spike afterpotentials in rat hypothalamoneurohypophysial neurons.
Bourque C, Kirkpatrick K, Jarvis C
Cell Mol Neurobiol. 1998; 18(1):3-12.
PMID: 9524726
PMC: 11560155.
DOI: 10.1023/a:1022566924921.
Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
Giovannucci D, Stuenkel E
J Physiol. 1997; 498 ( Pt 3):735-51.
PMID: 9051585
PMC: 1159190.
DOI: 10.1113/jphysiol.1997.sp021898.
Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array.
Obaid A, Salzberg B
J Gen Physiol. 1996; 107(3):353-68.
PMID: 8868047
PMC: 2216991.
DOI: 10.1085/jgp.107.3.353.
Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations.
Rosenboom H, Lindau M
Proc Natl Acad Sci U S A. 1994; 91(12):5267-71.
PMID: 8202480
PMC: 43975.
DOI: 10.1073/pnas.91.12.5267.
Phosphorylation and dephosphorylation modulate a Ca(2+)-activated K+ channel in rat peptidergic nerve terminals.
Bielefeldt K, Jackson M
J Physiol. 1994; 475(2):241-54.
PMID: 8021831
PMC: 1160374.
DOI: 10.1113/jphysiol.1994.sp020065.
Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals.
Jackson M, Zhang S
J Physiol. 1995; 483 ( Pt 3):597-611.
PMID: 7776246
PMC: 1157805.
DOI: 10.1113/jphysiol.1995.sp020609.
Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings.
Stuenkel E
J Physiol. 1994; 481 ( Pt 2):251-71.
PMID: 7738824
PMC: 1155926.
DOI: 10.1113/jphysiol.1994.sp020436.
Ultrastructural changes in the neurohypophysis of the aged male rat.
RECHARDT L, Hervonen H
Cell Tissue Res. 1982; 226(1):51-62.
PMID: 7127425
DOI: 10.1007/BF00217081.