Filippova I, Dvoryakova E, Sokolenko N, Simonyan T, Tereshchenkova V, Zhiganov N
Front Mol Biosci. 2020; 7:578758.
PMID: 33195423
PMC: 7643032.
DOI: 10.3389/fmolb.2020.578758.
Ferrall-Fairbanks M, Barry Z, Affer M, Shuler M, Moomaw E, Platt M
Protein Sci. 2017; 26(4):880-890.
PMID: 28078782
PMC: 5368069.
DOI: 10.1002/pro.3113.
Cordara G, van Eerde A, Grahn E, Winter H, Goldstein I, Krengel U
PLoS One. 2016; 11(2):e0149407.
PMID: 26901797
PMC: 4764322.
DOI: 10.1371/journal.pone.0149407.
Schroder J, Noack S, Marhofer R, Mottram J, Coombs G, Selzer P
PLoS One. 2013; 8(10):e77460.
PMID: 24146999
PMC: 3797739.
DOI: 10.1371/journal.pone.0077460.
Corvo I, ODonoghue A, Pastro L, Pi-Denis N, Eroy-Reveles A, Roche L
PLoS Negl Trop Dis. 2013; 7(7):e2269.
PMID: 23875031
PMC: 3708847.
DOI: 10.1371/journal.pntd.0002269.
Structural basis for the recognition and cleavage of histone H3 by cathepsin L.
Adams-Cioaba M, Krupa J, Xu C, Mort J, Min J
Nat Commun. 2011; 2:197.
PMID: 21326229
PMC: 3105313.
DOI: 10.1038/ncomms1204.
Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K.
Ma S, Devi-Kesavan L, Gao J
J Am Chem Soc. 2007; 129(44):13633-45.
PMID: 17935329
PMC: 2556303.
DOI: 10.1021/ja074222+.
Probing cathepsin K activity with a selective substrate spanning its active site.
Lecaille F, Weidauer E, Juliano M, Bromme D, Lalmanach G
Biochem J. 2003; 375(Pt 2):307-12.
PMID: 12837132
PMC: 1223680.
DOI: 10.1042/BJ20030468.
S3 to S3' subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates.
Alves M, Puzer L, Cotrin S, Juliano M, Juliano L, Bromme D
Biochem J. 2003; 373(Pt 3):981-6.
PMID: 12733990
PMC: 1223542.
DOI: 10.1042/BJ20030438.
Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides.
Cezari M, Puzer L, Juliano M, Carmona A, Juliano L
Biochem J. 2002; 368(Pt 1):365-9.
PMID: 12201820
PMC: 1222986.
DOI: 10.1042/BJ20020840.
S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B.
Krupa J, Hasnain S, Nagler D, Menard R, Mort J
Biochem J. 2002; 361(Pt 3):613-9.
PMID: 11802791
PMC: 1222344.
DOI: 10.1042/0264-6021:3610613.
Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates.
Portaro F, Santos A, Cezari M, Juliano M, Juliano L, Carmona E
Biochem J. 2000; 347 Pt 1:123-9.
PMID: 10727410
PMC: 1220939.
Amino acid substitutions in the N-terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases.
Mason R, Sol-Church K, Abrahamson M
Biochem J. 1998; 330 ( Pt 2):833-8.
PMID: 9480898
PMC: 1219213.
DOI: 10.1042/bj3300833.
Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides.
Nery E, Juliano M, Meldal M, Svendsen I, Scharfstein J, Walmsley A
Biochem J. 1997; 323 ( Pt 2):427-33.
PMID: 9163334
PMC: 1218337.
DOI: 10.1042/bj3230427.
Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases.
Lalmanach G, Serveau C, Chagas J, Mayer R, Juliano L, Gauthier F
J Protein Chem. 1995; 14(8):645-53.
PMID: 8747425
DOI: 10.1007/BF01886903.
Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors.
Serveau C, Lalmanach G, Juliano M, Scharfstein J, Juliano L, Gauthier F
Biochem J. 1996; 313 ( Pt 3):951-6.
PMID: 8611180
PMC: 1217003.
DOI: 10.1042/bj3130951.