Tsukanov A, Mironova V, Levitsky V
Front Plant Sci. 2022; 13:938545.
PMID: 35968123
PMC: 9373801.
DOI: 10.3389/fpls.2022.938545.
Eggeling R
Nucleic Acids Res. 2018; 46(20):e121.
PMID: 30085218
PMC: 6237759.
DOI: 10.1093/nar/gky683.
Meher P, Sahu T, Rao A, Wahi S
Algorithms Mol Biol. 2016; 11:16.
PMID: 27252772
PMC: 4888255.
DOI: 10.1186/s13015-016-0078-4.
Meher P, Sahu T, Rao A
BioData Min. 2016; 9:4.
PMID: 26807151
PMC: 4724119.
DOI: 10.1186/s13040-016-0086-4.
Eggeling R, Roos T, Myllymaki P, Grosse I
BMC Bioinformatics. 2015; 16:375.
PMID: 26552868
PMC: 4640111.
DOI: 10.1186/s12859-015-0797-4.
Varying levels of complexity in transcription factor binding motifs.
Keilwagen J, Grau J
Nucleic Acids Res. 2015; 43(18):e119.
PMID: 26116565
PMC: 4605289.
DOI: 10.1093/nar/gkv577.
A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
Meher P, Sahu T, Rao A, Wahi S
BMC Bioinformatics. 2014; 15:362.
PMID: 25420551
PMC: 4702320.
DOI: 10.1186/s12859-014-0362-6.
On the value of intra-motif dependencies of human insulator protein CTCF.
Eggeling R, Gohr A, Keilwagen J, Mohr M, Posch S, Smith A
PLoS One. 2014; 9(1):e85629.
PMID: 24465627
PMC: 3899044.
DOI: 10.1371/journal.pone.0085629.
A general approach for discriminative de novo motif discovery from high-throughput data.
Grau J, Posch S, Grosse I, Keilwagen J
Nucleic Acids Res. 2013; 41(21):e197.
PMID: 24057214
PMC: 3834837.
DOI: 10.1093/nar/gkt831.
Computational predictions provide insights into the biology of TAL effector target sites.
Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J
PLoS Comput Biol. 2013; 9(3):e1002962.
PMID: 23526890
PMC: 3597551.
DOI: 10.1371/journal.pcbi.1002962.
Improved models for transcription factor binding site identification using nonindependent interactions.
Zhao Y, Ruan S, Pandey M, Stormo G
Genetics. 2012; 191(3):781-90.
PMID: 22505627
PMC: 3389974.
DOI: 10.1534/genetics.112.138685.
Use of ChIP-Seq data for the design of a multiple promoter-alignment method.
Erb I, Gonzalez-Vallinas J, Bussotti G, Blanco E, Eyras E, Notredame C
Nucleic Acids Res. 2012; 40(7):e52.
PMID: 22230796
PMC: 3326335.
DOI: 10.1093/nar/gkr1292.
Maximally efficient modeling of DNA sequence motifs at all levels of complexity.
Stormo G
Genetics. 2011; 187(4):1219-24.
PMID: 21300846
PMC: 3070529.
DOI: 10.1534/genetics.110.126052.
Decreasing the number of false positives in sequence classification.
Machado-Lima A, Kashiwabara A, Durham A
BMC Genomics. 2011; 11 Suppl 5:S10.
PMID: 21210966
PMC: 3045793.
DOI: 10.1186/1471-2164-11-S5-S10.
Inclusion of neighboring base interdependencies substantially improves genome-wide prokaryotic transcription factor binding site prediction.
Salama R, Stekel D
Nucleic Acids Res. 2010; 38(12):e135.
PMID: 20439311
PMC: 2896541.
DOI: 10.1093/nar/gkq274.
Apples and oranges: avoiding different priors in Bayesian DNA sequence analysis.
Keilwagen J, Grau J, Posch S, Grosse I
BMC Bioinformatics. 2010; 11:149.
PMID: 20307305
PMC: 2859755.
DOI: 10.1186/1471-2105-11-149.
Unifying generative and discriminative learning principles.
Keilwagen J, Grau J, Posch S, Strickert M, Grosse I
BMC Bioinformatics. 2010; 11:98.
PMID: 20175896
PMC: 2848239.
DOI: 10.1186/1471-2105-11-98.
Genome-wide discovery of human heart enhancers.
Narlikar L, Sakabe N, Blanski A, Arimura F, Westlund J, Nobrega M
Genome Res. 2010; 20(3):381-92.
PMID: 20075146
PMC: 2840982.
DOI: 10.1101/gr.098657.109.
Inferring binding energies from selected binding sites.
Zhao Y, Granas D, Stormo G
PLoS Comput Biol. 2009; 5(12):e1000590.
PMID: 19997485
PMC: 2777355.
DOI: 10.1371/journal.pcbi.1000590.
Impact of DNA-binding position variants on yeast gene expression.
Swamy K, Cho C, Chiang S, Tsai Z, Tsai H
Nucleic Acids Res. 2009; 37(21):6991-7001.
PMID: 19767613
PMC: 2790881.
DOI: 10.1093/nar/gkp743.