» Articles » PMID: 8265597

Evolution of Nuclear Ribosomal RNAs in Kinetoplastid Protozoa: Perspectives on the Age and Origins of Parasitism

Overview
Specialty Science
Date 1993 Dec 15
PMID 8265597
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular evolutionary relationships within the protozoan order Kinetoplastida were deduced from comparisons of the nuclear small and large subunit ribosomal RNA (rRNA) gene sequences. These studies show that relationships among the trypanosomatid protozoans differ from those previously proposed from studies of organismal characteristics or mitochondrial rRNAs. The genera Leishmania, Endotrypanum, Leptomonas, and Crithidia form a closely related group, which shows progressively more distant relationships to Phytomonas and Blastocrithidia, Trypanosoma cruzi, and lastly Trypanosoma brucei. The rooting of the trypanosomatid tree was accomplished by using Bodo caudatus (family Bodonidae) as an outgroup, a status confirmed by molecular comparisons with other eukaryotes. The nuclear rRNA tree agrees well with data obtained from comparisons of other nuclear genes. Differences with the proposed mitochondrial rRNA tree probably reflect the lack of a suitable outgroup for this tree, as the topologies are otherwise similar. Small subunit rRNA divergences within the trypanosomatids are large, approaching those among plants and animals, which underscores the evolutionary antiquity of the group. Analysis of the distribution of different parasitic life-styles of these species in conjunction with a probable timing of evolutionary divergences suggests that vertebrate parasitism arose multiple times in the trypanosomatids.

Citing Articles

Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation.

Catacalos C, Krohannon A, Somalraju S, Meyer K, Janga S, Chakrabarti K PLoS Pathog. 2022; 18(12):e1010972.

PMID: 36548245 PMC: 9778586. DOI: 10.1371/journal.ppat.1010972.


The Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite and Their Analyses in Yeast.

Mokdadi M, Abdelkrim Y, Banroques J, Huvelle E, Oualha R, Yeter-Alat H Genes (Basel). 2021; 12(2).

PMID: 33535521 PMC: 7912733. DOI: 10.3390/genes12020212.


Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases.

Parthasarathy A, Kalesh K RSC Med Chem. 2021; 11(6):625-645.

PMID: 33479664 PMC: 7549140. DOI: 10.1039/d0md00122h.


Study of and in kinetoplastids and the evolution of tyrosine recombinase retrotransposons.

Ribeiro Y, Robe L, Veluza D, Dos Santos C, Lopes A, Krieger M Mob DNA. 2019; 10:34.

PMID: 31391870 PMC: 6681497. DOI: 10.1186/s13100-019-0175-2.


RNA Viruses in (Trypanosomatidae) and Evolution of .

Grybchuk D, Kostygov A, Macedo D, Votypka J, Lukes J, Yurchenko V mBio. 2018; 9(5).

PMID: 30327446 PMC: 6191543. DOI: 10.1128/mBio.01932-18.


References
1.
Alonso G, Guevara P, Ramirez J . Trypanosomatidae codon usage and GC distribution. Mem Inst Oswaldo Cruz. 1992; 87(4):517-23. DOI: 10.1590/s0074-02761992000400009. View

2.
Hernandez R, Rios P, Valdes A, Pinero D . Primary structure of Trypanosoma cruzi small-subunit ribosomal RNA coding region: comparison with other trypanosomatids. Mol Biochem Parasitol. 1990; 41(2):207-12. DOI: 10.1016/0166-6851(90)90183-m. View

3.
Beverley S . Characterization of the 'unusual' mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucleic Acids Res. 1988; 16(3):925-39. PMC: 334728. DOI: 10.1093/nar/16.3.925. View

4.
Parsons M, Stuart K, Smiley B . Trypanosoma brucei: analysis of codon usage and nucleotide composition of nuclear genes. Exp Parasitol. 1991; 73(1):101-5. DOI: 10.1016/0014-4894(91)90012-l. View

5.
Campbell D, Kubo K, Clark C, Boothroyd J . Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA. J Mol Biol. 1987; 196(1):113-24. DOI: 10.1016/0022-2836(87)90514-6. View