» Articles » PMID: 8264527

High Frequency One-step Gene Replacement in Trichoderma Reesei. II. Effects of Deletions of Individual Cellulase Genes

Overview
Journal Mol Gen Genet
Date 1993 Dec 1
PMID 8264527
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2 slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2 gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.

Citing Articles

Constitutive overexpression of cellobiohydrolase 2 in reveals its ability to initiate cellulose degradation.

Wang Y, Ren M, Wang Y, Wang L, Liu H, Shi M Eng Microbiol. 2024; 3(1):100059.

PMID: 39628517 PMC: 11611025. DOI: 10.1016/j.engmic.2022.100059.


Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues.

Wang Y, Liu R, Liu H, Li X, Shen L, Zhang W Microb Cell Fact. 2022; 21(1):5.

PMID: 34983541 PMC: 8725555. DOI: 10.1186/s12934-021-01727-8.


Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives.

Ostby H, Hansen L, Horn S, Eijsink V, Varnai A J Ind Microbiol Biotechnol. 2020; 47(9-10):623-657.

PMID: 32840713 PMC: 7658087. DOI: 10.1007/s10295-020-02301-8.


Insight into the role of α-arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers.

Xin D, Chen X, Wen P, Zhang J Biotechnol Biofuels. 2019; 12:64.

PMID: 30949240 PMC: 6429694. DOI: 10.1186/s13068-019-1412-0.


Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex.

Hao Z, Su X BMC Biotechnol. 2019; 19(1):2.

PMID: 30626373 PMC: 6325762. DOI: 10.1186/s12896-018-0498-y.


References
1.
Harkki A, Mantyla A, Penttila M, Muttilainen S, Buhler R, Suominen P . Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb Technol. 1991; 13(3):227-33. DOI: 10.1016/0141-0229(91)90133-u. View

2.
Teeri T, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J . Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene. 1987; 51(1):43-52. DOI: 10.1016/0378-1119(87)90472-0. View

3.
Kelly J, Hynes M . Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 1985; 4(2):475-9. PMC: 554210. DOI: 10.1002/j.1460-2075.1985.tb03653.x. View

4.
Karhunen T, Mantyla A, Nevalainen K, Suominen P . High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet. 1993; 241(5-6):515-22. DOI: 10.1007/BF00279893. View

5.
Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J . A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene. 1987; 61(2):155-64. DOI: 10.1016/0378-1119(87)90110-7. View