» Articles » PMID: 8214608

Layer V Pyramidal Cells in the Adult Human Cingulate Cortex. A Quantitative Golgi-study

Overview
Date 1993 Jun 1
PMID 8214608
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The anterior and posterior parts of the human cingulate cortex differ in their absolute number of neurons per unit volume, with fewer neurons in the anterior part. To test the hypothesis that lower absolute number and packing density of neurons in the anterior cingulate cortex are associated with an increased complexity in the neuropil compartment, dendritic arborizations of layer V neurons in both cingulate parts were analyzed in a Golgi study. Results show that these neurons in the anterior cingulate cortex have more primary and secondary basal dendrites than those in the posterior cingulate cortex. This establishes an association of a higher complexity of the dendritic arborization in the anterior cingulate cortex with a lower cell number per unit volume and larger neuropil compartment. The significant lower degree of dendritic arborization in the posterior cingulate cortex is accompanied by a higher cell packing density. These structural differences are associated with functional differences between the two parts of the human cingulate cortex.

Citing Articles

A Magnetic Resonance Spectroscopy Study on Polarity Subphenotypes in Bipolar Disorder.

Argyropoulos G, Christidi F, Karavasilis E, Bede P, Velonakis G, Antoniou A Diagnostics (Basel). 2024; 14(11).

PMID: 38893696 PMC: 11172378. DOI: 10.3390/diagnostics14111170.


Subcomponents of brain T2* relaxation in schizophrenia, bipolar disorder and siblings: A Gradient Echo Plural Contrast Imaging (GEPCI) study.

Mamah D, Wen J, Luo J, Ulrich X, Barch D, Yablonskiy D Schizophr Res. 2015; 169(1-3):36-45.

PMID: 26603058 PMC: 4681636. DOI: 10.1016/j.schres.2015.10.004.


A dual comparative approach: integrating lines of evidence from human evolutionary neuroanatomy and neurodevelopmental disorders.

Hanson K, Hrvoj-Mihic B, Semendeferi K Brain Behav Evol. 2014; 84(2):135-55.

PMID: 25247986 PMC: 4174449. DOI: 10.1159/000365409.


Magnetic resonance microscopy of human and porcine neurons and cellular processes.

Flint J, Hansen B, Portnoy S, Lee C, King M, Fey M Neuroimage. 2012; 60(2):1404-11.

PMID: 22281672 PMC: 3304009. DOI: 10.1016/j.neuroimage.2012.01.050.


The linear organization of cell columns in human and nonhuman anthropoid Tpt cortex.

Buxhoeveden D, Lefkowitz W, Loats P, Armstrong E Anat Embryol (Berl). 1996; 194(1):23-36.

PMID: 8800420 DOI: 10.1007/BF00196312.

References
1.
Peters A, Kara D, Harriman K . The neuronal composition of area 17 of rat visual cortex. III. Numerical considerations. J Comp Neurol. 1985; 238(3):263-74. DOI: 10.1002/cne.902380303. View

2.
Foh E, Haug H, Konig M, Rast A . [Determination of quantitative parameters of the fine structure in the visual cortex of the cat, also a methodological contribution on measuring the neuropil (author's transl)]. Microsc Acta. 1973; 75(2):148-68. View

3.
Nakamura S, Akiguchi I, Kameyama M, Mizuno N . Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol. 1985; 65(3-4):281-4. DOI: 10.1007/BF00687009. View

4.
Brody H . Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol. 1955; 102(2):511-6. DOI: 10.1002/cne.901020206. View

5.
SCHADE J, Baxter C . Changes during growth in the volume and surface area of cortical neurons in the rabbit. Exp Neurol. 1960; 2:158-78. DOI: 10.1016/0014-4886(60)90005-4. View